logo
    Separation, synthesis, and cytotoxicity of a series of mogrol derivatives
    8
    Citation
    20
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Four metabolites of mogrol were separated, identified and characterized. Their antitumor activity was evaluated, and the results showed side chain modification would probably enhance the cytotoxicity. Therefore, three types of amines, alcohols and rigid planar derivatives were synthesized. Compounds 20 and 21 containing a tetrahydro-β-carboline structure at the end of the side chain exhibited IC50 values around 2-9 μM against A549 and CNE1 cell comparing with 80-90 μM of mogrol. Structure analysis suggested that the perhydrocyclopentanophenanthrene moiety and the tetrahydro-β-carboline moiety could probably enhance the activity through an intramolecular synergistic effect.[Formula: see text].
    Keywords:
    Moiety
    Side chain
    Structure–activity relationship
    Eighteen scalarane sesterterpenoids (1–18), including eight new derivatives (1–8), were isolated from the sponge Hyrtios erectus (family Thorectidae), the extract of which showed cytotoxicity against the HeLa and MCF-7 cell lines. Of the new derivatives, six compounds (1–6) were found to contain a γ-hydroxybutenolide moiety capable of reversible stereoinversion at the hydroxylated carbon center. Under the influence of other adjacent functional groups, each derivative exhibited a different stereochemical behavior, which was fully deduced by ROESY experiments. All the isolated compounds were examined for their cytotoxicity by MTS assay using staurosporine as a positive control (IC50 0.18 and 0.13 μΜ against HeLa and MCF-7 cells, respectively), and they were found to show weak growth inhibitory activities against HeLa and MCF-7 cells, with a minimal IC50 value of 20.0 μΜ. The compounds containing a γ-hydroxybutenolide moiety (1–3, 10, 12) showed cytotoxicity, with IC50 values ranging from 24.3 to 29.9 μΜ, and the most potent derivative was heteronemin (16). Although the cytotoxicities of isolated compounds were insufficient to discuss the structure–activity relationship, this research could contribute to expanding the structural diversity of scalaranes and understanding the stereochemical behavior of γ-hydroxybutenolides.
    Sponge
    Citations (6)
    Four metabolites of mogrol were separated, identified and characterized. Their antitumor activity was evaluated, and the results showed side chain modification would probably enhance the cytotoxicity. Therefore, three types of amines, alcohols and rigid planar derivatives were synthesized. Compounds 20 and 21 containing a tetrahydro-β-carboline structure at the end of the side chain exhibited IC50 values around 2-9 μM against A549 and CNE1 cell comparing with 80-90 μM of mogrol. Structure analysis suggested that the perhydrocyclopentanophenanthrene moiety and the tetrahydro-β-carboline moiety could probably enhance the activity through an intramolecular synergistic effect.[Formula: see text].
    Moiety
    Side chain
    Structure–activity relationship