logo
    Developing roles for Hox proteins in hindbrain gene regulatory networks
    11
    Citation
    47
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Hox proteins have long been known to function as transcriptional regulators during development of the vertebrate hindbrain. In particular, these factors are thought to play key roles in assigning distinct fates to the rhombomere segments arising in the embryonic hindbrain. However, it remains uncertain exactly how the Hox proteins fit into the regulatory networks controlling hindbrain formation. For instance, it is unclear if Hox proteins fulfill similar roles in different rhombomeres and if they are absolutely required for all aspects of each rhombomere fate. Recent advances in the discovery, characterization and functional analysis of hindbrain gene regulatory networks is now allowing us to revisit these types of questions. In this review we focus on recent data on the formation of caudal rhombomeres in vertebrates, with a specific focus on zebrafish, to derive an up-to-date view of the role for Hox proteins in the regulation of hindbrain development.
    Keywords:
    Rhombomere
    Hindbrain
    Targeted disruption of the murine hox-A1 gene results in severe defects in the formation of the hindbrain and associated cranial ganglia and nerves. Carbocyanine dye injections were used to trace afferent and efferent projections to and from the hindbrain in hox-A1-/hox-A1- mutant mice. Defects were observed in the position of efferent neurons in the hindbrain and in their projection patterns. In situ hybridization was used to analyze the transcription pattern of genes expressed within specific rhombomeres. Krox-20, int-2 (fgf-3), and hox-B1 all display aberrant patterns of expression in hox-A1- mutant embryos. The observed morphological and molecular defects suggest that there are changes in the formation of the hindbrain extending from rhombomere 3 through rhombomere 8 including the absence of rhombomere 5. Also, motor neurons identified by their axon projection patterns which would normally be present in the missing rhombomere appear to be respecified to or migrate into adjacent rhombomeres, suggesting a role for hox-A1 in the specification of cell identity and/or cell migration in the hindbrain.
    Rhombomere
    Hindbrain
    Citations (340)
    Abstract Background The Hox family of homeodomain transcription factors comprises pivotal regulators of cell specification and identity during animal development. However, despite their well-defined roles in the establishment of anteroposterior pattern and considerable research into their mechanism of action, relatively few target genes have been identified in the downstream regulatory network. We have sought to investigate this issue, focussing on the developing hindbrain and the cranial motor neurons that arise from this region. The reiterated anteroposterior compartments of the developing hindbrain (rhombomeres (r)) are normally patterned by the combinatorial action of distinct Hox genes. Alteration in the normal pattern of Hox cues in this region results in a transformation of cellular identity to match the remaining Hox profile, similar to that observed in Drosophila homeotic transformations. Results To define the repertoire of genes regulated in each rhombomere, we have analysed the transcriptome of each rhombomere from wild-type mouse embryos and not those where pattern is perturbed by gain or loss of Hox gene function. Using microarray and bioinformatic methodologies in conjunction with other confirmatory techniques, we report here a detailed and comprehensive set of potential Hox target genes in r2, r3, r4 and r5. We have demonstrated that the data produced are both fully reflective and predictive of rhombomere identity and, thus, may represent some the of Hox targets. These data have been interrogated to generate a list of candidate genes whose function may contribute to the generation of neuronal subtypes characteristic of each rhombomere. Interestingly, the data can also be classified into genetic motifs that are predicted by the specific combinations of Hox genes and other regulators of hindbrain anteroposterior identity. The sets of genes described in each or combinations of rhombomeres span a wide functional range and suggest that the Hox genes, as well as other regulatory inputs, exert their influence across the full spectrum of molecular machinery. Conclusion We have performed a systematic survey of the transcriptional status of individual segments of the developing mouse hindbrain and identified hundreds of previously undescribed genes expressed in this region. The functional range of the potential candidate effectors or upstream modulators of Hox activity suggest multiple unexplored mechanisms. In particular, we present evidence of a potential new retinoic acid signalling system in ventral r4 and propose a model for the refinement of identity in this region. Furthermore, the rhombomeres demonstrate a molecular relationship to each other that is consistent with known observations about neurogenesis in the hindbrain. These findings give the first genome-wide insight into the complexity of gene expression during patterning of the developing hindbrain.
    Hindbrain
    Rhombomere
    Developmental Biology
    Citations (44)
    Abstract In the hindbrain and the adjacent cranial neural crest (NC) cells of jawed vertebrates (gnathostomes), nested and segmentally-restricted domains of Hox gene expression provide a combinatorial Hox -code for specifying regional properties during head development. Extant jawless vertebrates, such as the sea lamprey (Petromyzon marinus), can provide insights into the evolution and diversification of this Hox -code in vertebrates. There is evidence for gnathostome-like spatial patterns of Hox expression in lamprey; however, the expression domains of the majority of lamprey hox genes from paralogy groups (PG) 1-4 are yet to be characterized, so it is unknown whether they are coupled to hindbrain segments (rhombomeres) and NC. In this study, we systematically describe the spatiotemporal expression of all 14 sea lamprey hox genes from PG1-PG4 in the developing hindbrain and pharynx to investigate the extent to which their expression conforms to the archetypal gnathostome hindbrain and pharyngeal hox- codes. We find many similarities in Hox expression between lamprey and gnathostome species, particularly in rhombomeric domains during hindbrain segmentation and in the cranial neural crest, enabling inference of aspects of Hox expression in the ancestral vertebrate embryonic head. These data are consistent with the idea that a Hox regulatory network underlying hindbrain segmentation is a pan vertebrate trait. We also reveal differences in hindbrain domains at later stages, as well as expression in the endostyle and in pharyngeal arch (PA) 1 mesoderm. Our analysis suggests that many Hox expression domains that are observed in extant gnathostomes were present in ancestral vertebrates but have been partitioned differently across Hox clusters in gnathostome and cyclostome lineages after duplication.
    Hindbrain
    Rhombomere
    Citations (1)
    This chapter discusses current understanding of hindbrain development with particular emphasis on the roles of Hox genes in mediating this process. The chapter is divided into three sections. The first section explores the properties of rhombomeres that influence how the neuronal architecture of the hindbrain is formed. The second examines the organization, expression patterns, and genetic function of Hox genes. The positional cues for patterning the head and neck appear to depend on the underlying embryonic organization of the central nervous system. The third section focuses on the neural crest, which is the conduit for transferring this positional information.
    Rhombomere
    Hindbrain
    Hox proteins have long been known to function as transcriptional regulators during development of the vertebrate hindbrain. In particular, these factors are thought to play key roles in assigning distinct fates to the rhombomere segments arising in the embryonic hindbrain. However, it remains uncertain exactly how the Hox proteins fit into the regulatory networks controlling hindbrain formation. For instance, it is unclear if Hox proteins fulfill similar roles in different rhombomeres and if they are absolutely required for all aspects of each rhombomere fate. Recent advances in the discovery, characterization and functional analysis of hindbrain gene regulatory networks is now allowing us to revisit these types of questions. In this review we focus on recent data on the formation of caudal rhombomeres in vertebrates, with a specific focus on zebrafish, to derive an up-to-date view of the role for Hox proteins in the regulation of hindbrain development.
    Rhombomere
    Hindbrain
    Citations (11)