A new look at an old question: when did the second whole genome duplication occur in vertebrate evolution?
74
Citation
11
Reference
10
Related Paper
Citation Trend
Abstract:
A recent study used 61 extant animal genomes to reconstruct the chromosomes of the hypothetical amniote ancestor. Comparison of this karyotype to the 17 chordate linkage groups previously inferred in the ancestral chordate indicated that two whole genome duplications probably occurred in the lineage preceding the ancestral vertebrate.Keywords:
Chordate
Amniote
Lineage (genetic)
Ancestor
Human genetics
Synteny
We consider a nonneutral population genetics model with parent-independent mutations and two selective classes. We calculate the stationary distribution of the type of the common ancestor of a sample of genes from this model. The expected fitness of any ancestor (including the most recent common ancestor of any sample) is shown to be greater than the expected fitness of a randomly chosen gene from the population. The process of mutations to the common ancestor is also analysed. Our results are related to, but more general than, results obtained from diffusion theory.
Ancestor
Cite
Citations (18)
Through a detailed research of several pedigrees spanning hundreds of years of Cheng clan in Xin’an, this paper illustrates the Cheng’s cognition on ancestor and their process of creating ancestor in different periods. In the Tang’s genealogy, their image of ancestor was Cheng Lingxi, who was thirteen generations before. Yet in the Song dynasty, it went backward to Xin’an satrap Cheng Yuantan in Jin Dynasty as the first settle man, and ancestor is Zhongli or even Huangdi. In Ming Jing Tai era, all the pedigrees from different factions were cleared up explicitly. While in Qing Jia Qing era and the Republic of China, the pedigrees were much clearer that lineage was from Huangdi till then. That Cheng’s process of creating ancestor in different times indicates that Huizhou was not an exception in the phenomenon of traditional clan ancestor creating.
Ancestor
Clan
Pedigree chart
Lineage (genetic)
Clearance
Cite
Citations (0)
Molecular evidence indicates that the last common ancestor of the genus Pan and the hominin clade existed between 8 and 4 million years ago (Ma). The current fossil record indicates the Pan-Homo last common ancestor existed at least 5 Ma and most likely between 6 and 7 Ma. Together, the molecular and fossil evidence has important consequences for interpreting the evolutionary history of the hand within the tribe Hominini (hominins). Firstly, parsimony supports the hypothesis that the hand of the last common ancestor most likely resembled that of an extant great ape overall (Pan, Gorilla, and Pongo), and that of an African ape in particular. Second, it provides a context for interpreting the derived changes to the hand that have evolved in various hominins. For example, the Australopithecus afarensis hand is likely derived in comparison with that of the Pan-Homo last common ancestor in having shorter fingers relative to thumb length and more proximo-distally oriented joints between its capitate, second metacarpal, and trapezium. This evidence suggests that these derived features evolved prior to the intensification of stone tool-related hominin behaviors beginning around 2.5 Ma. However, a majority of primitive features most likely present in the Pan-Homo last common ancestor are retained in the hands of Australopithecus, Paranthropus/early Homo, and Homo floresiensis. This evidence suggests that further derived changes to the hands of other hominins such as modern humans and Neandertals did not evolve until after 2.5 Ma and possibly even later than 1.5 Ma, which is currently the earliest evidence of Acheulian technology. The derived hands of modern humans and Neandertals may indicate a morphological commitment to tool-related manipulative behaviors beyond that observed in other hominins, including those (e.g. H. floresiensis) which may be descended from earlier tool-making species.
Ancestor
Hominidae
Australopithecus
Homo sapiens
Tribe
Common descent
Old World
Cite
Citations (213)
A recent study used 61 extant animal genomes to reconstruct the chromosomes of the hypothetical amniote ancestor. Comparison of this karyotype to the 17 chordate linkage groups previously inferred in the ancestral chordate indicated that two whole genome duplications probably occurred in the lineage preceding the ancestral vertebrate.
Chordate
Amniote
Lineage (genetic)
Ancestor
Human genetics
Synteny
Cite
Citations (74)
Somites are transitory metameric structures at the basis of the axial organization of vertebrate musculoskeletal system. During evolution, somites appear in the chordate phylum and compartmentalize mainly into the dermomyotome, the myotome, and the sclerotome in vertebrates. In this review, we summarized the existing literature about somite compartmentalization in Xenopus and compared it with other anamniote and amniote vertebrates. We also present and discuss a model that describes the evolutionary history of somite compartmentalization from ancestral chordates to amniote vertebrates. We propose that the ancestral organization of chordate somite, subdivided into a lateral compartment of multipotent somitic cells (MSCs) and a medial primitive myotome, evolves through two major transitions. From ancestral chordates to vertebrates, the cell potency of MSCs may have evolved and gave rise to all new vertebrate compartments, i.e., the dermomyome, its hypaxial region, and the sclerotome. From anamniote to amniote vertebrates, the lateral MSC territory may expand to the whole somite at the expense of primitive myotome and may probably facilitate sclerotome formation. We propose that successive modifications of the cell potency of some type of embryonic progenitors could be one of major processes of the vertebrate evolution.
Amniote
Chordate
Myotome
Compartmentalization (fire protection)
Compartment (ship)
Notochord
Cite
Citations (8)
Ancestral reconstruction is a powerful tool for studying protein evolution as well as for protein design and engineering. However, in many positions alternative predictions with relatively high marginal probabilities exist, and thus the prediction comprises an ensemble of near-ancestor sequences that relate to the historical ancestor. The ancestral phenotype should therefore be explored for the entire ensemble, rather than for the sequence comprising the most probable amino acid at all positions [the most probable ancestor (mpa)]. To this end, we constructed libraries that sample ensembles of near-ancestor sequences. Specifically, we identified positions where alternatively predicted amino acids are likely to affect the ancestor's structure and/or function. Using the serum paraoxonases (PONs) enzyme family as a test case, we constructed libraries that combinatorially sample these alternatives. We next characterized these libraries, reflecting the vertebrate and mammalian PON ancestors. We found that the mpa of vertebrate PONs represented only one out of many different enzymatic phenotypes displayed by its ensemble. The mammalian ancestral library, however, exhibited a homogeneous phenotype that was well represented by the mpa. Our library design strategy that samples near-ancestor ensembles at potentially critical positions therefore provides a systematic way of examining the robustness of inferred ancestral phenotypes.
Ancestor
Robustness
Cite
Citations (40)
One of the main motivations to study amphioxus is its potential for understanding the last common ancestor of chordates, which notably gave rise to the vertebrates. An important feature in this respect is the slow evolutionary rate that seems to have characterized the cephalochordate lineage, making amphioxus an interesting proxy for the chordate ancestor, as well as a key lineage to include in comparative studies. Whereas slow evolution was first noticed at the phenotypic level, it has also been described at the genomic level. Here, we examine whether the amphioxus genome is indeed a good proxy for the genome of the chordate ancestor, with a focus on protein-coding genes. We investigate genome features, such as synteny, gene duplication and gene loss, and contrast the amphioxus genome with those of other deuterostomes that are used in comparative studies, such as Ciona, Oikopleura and urchin.
Chordate
Ancestor
Lineage (genetic)
Synteny
Comparative Genomics
Cite
Citations (47)
Abstract It is generally assumed that carnivore social organizations evolved directionally from a solitary ancestor into progressively more advanced forms of group living. Although alternative explanations exist, this evolutionary hypothesis has never been tested. Here, I used literature data and maximum likelihood reconstruction on a complete carnivore phylogeny to test this hypothesis against two others: one assuming directional evolution from a non‐solitary ancestor, and one assuming parallel evolutions from a socially flexible ancestor, that is, an ancestor with abilities to live in a variety of social organizations. The phylogenetic reconstructions did not support any of the three hypotheses of social evolution at the root of Carnivora. At the family level, however, there was support for a non‐solitary and socially flexible ancestor to Canidae, a socially flexible or solitary ancestor to Mustelidae, a solitary or socially flexible ancestor to Mephitidae, a solitary or group living ancestor to Phocidae, a group living ancestor to Otariidae and a solitary ancestor to Ursidae, Felidae, Herpestidae and Viverridae. There was equivocal support for the ancestral state of Procyonidae and Hyaenidae. It is unclear whether the common occurrence of a solitary ancestry at the family level was caused by a solitary ancestor at the root of Carnivora or by multiple transitions into a solitary state. The failure to support a solitary ancestor to Carnivora calls for caution when using this hypothesis in an evolutionary framework, and I suggest continued investigations of the pathways of the evolution of carnivore social organizations.
Ancestor
Carnivore
Lineage (genetic)
Cite
Citations (40)
We consider a nonneutral population genetics model with parent-independent mutations and two selective classes. We calculate the stationary distribution of the type of the common ancestor of a sample of genes from this model. The expected fitness of any ancestor (including the most recent common ancestor of any sample) is shown to be greater than the expected fitness of a randomly chosen gene from the population. The process of mutations to the common ancestor is also analysed. Our results are related to, but more general than, results obtained from diffusion theory.
Ancestor
Cite
Citations (40)