logo
    Enrichment of indium tin oxide from colour filter glass in waste liquid crystal display panels through flotation
    19
    Citation
    21
    Reference
    10
    Related Paper
    Citation Trend
    Indium is widely used in some important fields due to its semiconductor and optoelectronic performance. While the reduction of indium minerals, as one of secondary resources, the amount of indium–tin oxide (ITO) waste target has been accumulated considerably. ITO film is the main functional fraction of LCD has consumed more than 60% of the indium production worldwide. Therefore, it is necessary to recycle indium from ITO waste. Some researchers have been done for proper treatment to recycle indium from ITO waste. In this paper, the extraction methods of indium from ITO waste target are introduced, and the advantages and disadvantages of each method are compared.
    Indium tin oxide
    Indium is a rare metal. The largest end use for indium is in thin-film coatings as indium oxide combinined with 10 percent tin oxide (ITO). However, indium has recycling rates less than 1%. Indium and tin are especially well suited for fused salt electrolysis because their low melting points. The electrochemical behaviour of indium and tin oxides was studied by cyclic voltammetry (CV) in molten LiCl-KCl. The direct deoxidation of indium and tin oxides was investigated. A new design of direct eletrolytic reduction was proposed taking into the low melting points of indium and tin.
    Indium tin oxide
    Citations (0)
    Substance flow analysis (SFA) of indium has been conducted in this study. The purpose of this study is to identify the relevant issues for the development of an efficient indium recycling system by performing SFA of indium supplied for indium-tin oxide (ITO) processing as transparent electrodes, which accounts for 86.9% of the total indium demand. In this study, as part of the development of substance and material flow data, (1) data on the flow of indium was collected and reviewed, (2) the amount of dissipated indium associated with the production of flat-panel displays (FPDs) were estimated and (3) its environmental impact was also assessed.The major conclusions are (a) 470 t-In is used in ITO for transparent electrodes, out of which 220 t-In is dissipated or potentially dissipated in Japan, and (b) 220 t-In of dissipated indium is equivalent to 11.4 TJ of energy consumption, 0.5×103 t of CO2 emissions, and 1.0×106 t of Total Materials Requirement (TMR).
    Indium tin oxide
    Material flow analysis
    در میان پوشش های سخت، پوشش نیترید تیتانیوم (TiN) وکربونیترید تیتانیوم (TiCN) به علت برخوداری از سختی بالا، مقاومت به خوردگی خوب و ضریب اصطکاک کم توانسته‌اند تا بیش از ده برابر باعث افزایش طول عمر یک ابزار گردند. اعمال این دو پوشش بر روی زیر لایه های مختلف می تواند توسط فرآیند های مختلفی صورت گیرد. انتخاب نوع فرایند پوشش‌دهی می‌تواند تا حد زیادی بر ساختار، خواص مکانیکی و رفتار تریبولوژیکی این پوشش‌ها تأثیر گذار باشند. بر اساس مطالعات و بررسی‌های انجام شده تا کنون کار چندانی بر روی مقایسه این دو پوشش هنگامی که به روش EB-PVD (Electron Beam Gun PVD) انجام شده باشد، صورت نپذیرفته است. در این پژوهش پس از اعمال سیکل عملیات حرارتی متداول سخت کردن شامل آستنیته کردن، کوئنچ و تمپر، ابتدا پوشش‌های تک‌لایه TiN و TiCN و چندلایه TiN– TiCN- TiN به روش EB-PVD برروی فولاد ابزار D2 اعمال شد. سپس با استفاده از میکروسکوپ‌های الکترونی روبشی SEM، نیروی اتمی AFM، دستگاه نانوایندنتور، دستگاه پراش پرتو ایکس و همچنین انجام آزمون گلوله بر روی دیسک، سختی و رفتار تریبولوژی‍‍‍‍‍‍کی دو پوشش TiN و TiCN چه به صورت تک‌لایه و یا چندلایه مورد مطالعه قرار گرفت. تجزیه و تحلیل الگوهای پراش پرتو ایکس در پوشش‌های ایجاد شده و استفاده از رابطه شرر گویای این مطلب است که پوشش‌های ایجاد شده با ضخامتی 2 تا 3 میکرون دارای ساختاری نانو با اندازه دانه در حدود 5 تا 6 میکرون می‌باشند. میزان زبری سطح پوشش‌های ایجاد شده برای پوشش های TiN و TiCN و چندلایه TiN– TiCN- TiN به ترتیب برابر با 12و22و29 نانومتر بدست آمد. نتایج آزمون‌های نانوسختی سنجی و همچنین سایش نشان می‌دهند‌که بالاترین سختی و مقاومت سایشی مربوط به پوشش TiCN و کمترین متعلق به پوشش TiN است در حالی که پوشش چندلایه در بین این دو قرار دارد.
    Citations (0)
    Al과 Si사이에서 Ti의 충진처리가 확산방지막 성능에 미치는 영향에 대해서 조사하였다. TiN의 충진처리는 450˚C의 N2 분위기에서 30분간 열처리함으로써 행하였다. TEM 분석을 통해 갓 증착된 TiN의 결정립 사이에는 약 10-20A 정도의 고체물질이 없거나 TiN에 비해 밀도가 매우 낮은 공간이 존재함을 알 수 있었다. 또한 충진처리된 TiN의 경우에는 이러한 공간의 폭이 10A 이하로 줄어듦을 알 수 있었다. RBS와 AES 분석에 의해 갓 증착된 TiN는 dir 7at.% 정도의 산소를 함유하고 있었고, 충진처리된 TiN는 약 10-15at.%의 산소를 함유하고 있었다. 갓 증착된 TiN와 충진처리된 TiN를 확산방지막으로 시험한 결과, 갓 증착된 TiN는 650˚C, 1시간의 열처리 후에 Al 스파이크와 Si 패임자국의 형성으로 이해 파괴되었다. 하지만 충진처리된 TiN의 경우에는 같은 열처리 조건에서 Al 스파이크나 Si 패임자국을 전혀 찾아볼수 없었다. 따라서, TiN의 충진처리가 Al과 Si사이에서 확산 방지막 성능을 크게 향상시켜주는 효과가 있음을 알 수 있었다. 이와 같은 충진처리 효과는 TiN의 결정립계의 간격이 줄어듦에 의해서 빠른 확산 경로인 결정립계를 통한 확산이 감소하는 것에 기인하는 것으로 이해된다.
    Citations (0)
    In the work, sedimentation-stable sols of indium (III) and tin (IV) hydroxides were obtained by the Anion Resin Exchange Precipitation, which consists of the exchange reaction between the OH ions of the anion exchange resin and the anions of metal-containing solutions. The synthesized hydrosols were used to obtain conducting films of indium (III) In2O3 oxide and indium oxide doped with Tin In2O3: Sn, with a surface resistance of 4 kOhm/sq, thicknesses of 200–500 nm and a transparency of more than 85 %. The modes of applying precursors to glass substrates by the modified spray method and centrifugation method are selected. Films were studied using XRD, SEM, optical microscopy and spectrophotometry
    Indium tin oxide
    Tin oxide
    Citations (1)
    With the increasing industrial production and the broaden applications of indium tin oxide (ITO) materials, frequent exposure has posed great concerns for people, especially the workers in the indium related manufacturing plants. The exposed-workers have been reported to adverse effect and even die from the ITO-induced pulmonary disorders called "indium lung." In addition to the epidemiologic studies, the increasing animal studies also demonstrated the lung injuries induced by the acute or chronic respiratory exposure of ITO nanoparticles (ITO NPs). They could enter into the cells owing to the small particle size and induce oxidative stress, inflammatory responses, cytotoxicity or even genotoxicity. The indium ions released from the ITO particles via lysosomal acidification considered as the actual entity responsible for the toxicity of ITO NPs. To date, no effective therapies are available against ITO-induced pulmonary diseases, which calls for the full explorations of the pathological factors. Our present mini-review summarizes the current reports on ITO nanoparticles-induced pneumotoxic effect with focus on the indium ion release, which could help warrant the health risks of ITO and other ITO-based materials.
    Indium tin oxide
    Citations (3)