Selecting Lentil Accessions for Global Selenium Biofortification
24
Citation
26
Reference
10
Related Paper
Citation Trend
Abstract:
The biofortification of lentil (Lens culinaris Medikus.) has the potential to provide adequate daily selenium (Se) to human diets. The objectives of this study were to (1) determine how low-dose Se fertilizer application at germination affects seedling biomass, antioxidant activity, and Se uptake of 26 cultivated lentil genotypes; and (2) quantify the seed Se concentration of 191 lentil wild accessions grown in Terbol, Lebanon. A germination study was conducted with two Se treatments [0 (control) and 30 kg of Se/ha] with three replicates. A separate field study was conducted in Lebanon for wild accessions without Se fertilizer. Among cultivated lentil accessions, PI533690 and PI533693 showed >100% biomass increase vs.Se addition significantly increased seedling Se uptake, with the greatest uptake (6.2 µg g-1) by PI320937 and the least uptake (1.1 µg g-1) by W627780. Seed Se concentrations of wild accessions ranged from 0 to 2.5 µg g-1; accessions originating from Syria (0-2.5 µg g-1) and Turkey (0-2.4 µg g-1) had the highest seed Se. Frequency distribution analysis revealed that seed Se for 63% of accessions was between 0.25 and 0.75 µg g-1, and thus a single 50 g serving of lentil has the potential to provide adequate dietary Se (20-60% of daily recommended daily allowance). As such, Se application during plant growth for certain lentil genotypes grown in low Se soils may be a sustainable Se biofortification solution to increase seed Se concentration. Incorporating a diverse panel of lentil wild germplasm into Se biofortification programs will increase genetic diversity for effective genetic mapping for increased lentil seed Se nutrition and plant productivity.Keywords:
Biofortification
Germ plasm
Plant Breeding
ABSTRACT Micronutrient malnutrition affects over 2 billion people in the developing world. Iron (Fe) deficiency alone affects >47% of all preschool aged children globally, often leading to impaired physical growth, mental development, and learning capacity. Zinc (Zn) deficiency, like iron, is thought to affect billions of people, hampering growth and development, and destroying immune systems. In many micronutrient‐deficient regions, wheat is the dominant staple food making up >50% of the diet. Biofortification, or harnessing the powers of plant breeding to improve the nutritional quality of foods, is a new approach being used to improve the nutrient content of a variety of staple crops. Durum wheat in particular has been quite responsive to breeding for nutritional quality by making full use of the genetic diversity of Fe and Zn concentrations in wild and synthetic parents. Micronutrient concentration and genetic diversity has been well explored under the HarvestPlus biofortification research program, and very positive associations have been confirmed between grain concentrations of protein, Zn, and Fe. Yet some work remains to adequately explain genetic control and molecular mechanisms affecting the accumulation of Zn and Fe in grain. Further, evidence suggests that nitrogen (N) nutritional status of plants can have a positive impact on root uptake and the deposition of micronutrients in seed. Extensive research has been completed on the role of Zn fertilizers in increasing the Zn density of grain, suggesting that where fertilizers are available, making full use of Zn fertilizers can provide an immediate and effective option to increase grain Zn concentration, and productivity in particular, under soil conditions with severe Zn deficiency.
Biofortification
Micronutrient deficiency
Plant Breeding
Staple food
Human nutrition
Grain Quality
Cite
Citations (712)
Biofortification
Plant Breeding
Cite
Citations (16)
Next-generation technologies for iron and zinc biofortification and bioavailability in cereal grains
Iron (Fe) and zinc (Zn) are recognised as micronutrients of clinical significance to public health globally. Major staple crops (wheat, rice and maize) contain insufficient levels of these micronutrients. Baseline concentrations in wheat and maize grains are 30 µg/g for Fe and 25 µg/g for Zn, and in rice grains, 2 µg/g for Fe and 16 µg/g for Zn. However, wheat grains should contain 59 μg Fe/g and 38 μg Zn/g if they are to meet 30–40% of the average requirement of an adult diet. Scientists are addressing malnutrition problems by trying to enhance Fe and Zn accumulation in grains through conventional and next-generation techniques. This article explores the applicability and efficiency of novel genome editing tools compared with conventional breeding for Fe and Zn biofortification and for improving the bioavailability of cereal grains. Some wheat varieties with large increases in Zn concentration have been developed through conventional breeding (e.g. BHU1, BHU-6 and Zincol-2016, with 35–42 µg Zn/g); however, there has been little such success with Fe concentration. Similarly, no rice variety has been developed through conventional breeding with the required grain Fe concentration of 14.5 µg/g. Transgenic approaches have played a significant role for Fe and Zn improvement in cereal crops but have the limitations of low acceptance and strict regulatory processes. Precise editing by CRISPR-Cas9 will help to enhance the Fe and Zn content in cereals without any linkage drag and biosafety issues. We conclude that there is an urgent need to biofortify cereal crops with Fe and Zn by using efficient next-generation approaches such as CRISPR/Cas9 so that the malnutrition problem, especially in developing countries, can be addressed.
Biofortification
Plant Breeding
Monogastric
Micronutrient deficiency
Biosafety
Staple food
Cite
Citations (10)
Biofortification
Plant Breeding
Staple food
Genetically modified rice
Molecular breeding
Cite
Citations (174)
Biofortification
Plant Breeding
Human nutrition
Cite
Citations (2,036)
Biofortification
Cite
Citations (0)
Selenium, as an essential micronutrient for humans, has several roles in health and thus, its intake at optimum levels is highly beneficial. However, 500-1000 million of people worldwide suffer selenium deficiency, due to the low Se levels in soils of agricultural lands. Biofortification of crops with Se-rich fertilizers is the most effective approach to counteract selenium deficiency. However, the selenium speciation is also fundamental: plants are able to transform the soil inorganic selenium, i.e. selenite and selenate ions, into organic selenium, such as selenoamino acids, which are less toxic and more bioavailable. Wheat is the most consumed cereal worldwide and is able to tolerate and accumulate over 100 mg Se per kg of dry weight, thus being a suitable candidate for Se biofortification to produce an enriched functional food. Selenium in wheat is found in the form of five major selenium species: selenite, selenate, selenomethionine, methylselenocysteine and selenocystine. In the present thesis, the content and distribution of these species in wheat was determined by the tamdem of high-performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) after appropriate enzymatic sample digestion, and by X-Ray Absorption Spectroscopy (XAS), using synchrotron radiation, among other techniques. The speciation and concentration of Se, the plant growth conditions and the stage in which selenium is applied to the plant define the degree of selenium uptake, metabolization and distribution through the different plant organs. Selenite is readily reduced in wheat roots, and thus, it accumulates preferentially in underground tissues; on the other hand, selenate is highly mobile through the plant xylem and its translocation is faster than its reduction, therefore accumulating in shoots. The application of high Se concentrations may result in excessive tissue accumulation, and thus, plant stress and Se-induced toxicity, decreased plant biomass production and reduced grain yield. However, wheat phytotoxicity may be reduced by the application of selenium at florescence time, but still achieving similar enrichment of grain and Se metabolization. Selenite was almost completely reduced into organic species, especially in roots, where the induced toxicity effects produced a strong oxidizing environment within the plant, thus producing a high accumulation of organic selenium in grain in the form of selenocystine. Oppositely, selenate showed slower metabolization and a significant accumulation of selenium in inorganic forms in shoots, although in grain selenium was found as organic species in the form of selenomethionine, which can be unspecifically incorporated into proteins. On the other hand, the application of both anions simultaneously contributed to balance the Se enrichment due to their separate metabolic pathways. The mixture caused a more equilibrated distribution of Se in the plant tissues, reducing its phytotoxicity, but resulting in the same total selenium concentration in grain and an intermediate amount of selenomethionine and selenocystine. Furthermore, the spatially resolved speciation analysis of wheat grains, showed high selenium accumulations in the germ, bran and pigment strand, and a low selenium concentration in the endosperm, which correlated positively with the concentration of proteins in the different parts of the grain. Finally, the protective effect of selenium against mercury toxicity was shown and it seems that it was due to the formation of a protein-Se-Hg complex in roots. This complex reduced the translocation of mercury to shoots and grain, the selenate mobility and the selenite reduction in roots, but at the same time it enhanced the accumulation of C-Se-C amino acids, such as selenomethionine, in wheat grain. As a result, selenium counteracted mercury phytotoxicity and reduced the risk in crops exposed to mercury polluted soils.
Biofortification
Selenate
Genetic algorithm
Sodium selenate
Cite
Citations (0)
Abstract BACKGROUND Selenium (Se) is a nutrient for animals and humans, and is considered beneficial to higher plants. Selenium concentrations are low in most soils, which can result in a lack of Se in plants, and consequently in human diets. Phytic acid (PA) is the main storage form of phosphorus in seeds, and it is able to form insoluble complexes with essential minerals in the monogastric gut. This study aimed to establish optimal levels of Se application to cowpea, with the aim of increasing Se concentrations. The efficiency of agronomic biofortification was evaluated by the application of seven levels of Se (0, 2.5, 5, 10, 20, 40, and 60 g ha −1 ) from two sources (selenate and selenite) to the soil under field conditions in 2016 and 2017. RESULTS Application of Se as selenate led to greater plant Se concentrations than application as selenite in both leaves and grains. Assuming human cowpea consumption of 54.2 g day −1 , Se application of 20 g ha −1 in 2016 or 10 g ha −1 in 2017 as selenate would have provided a suitable daily intake of Se (between 20 and 55 μg day −1 ) for humans. Phytic acid showed no direct response to Se application. CONCLUSION Selenate provides greater phytoavailability than selenite. The application of 10 g Se ha −1 of selenate to cowpea plants could provide sufficient seed Se to increase daily human intake by 13–14 μg d −1 . © 2019 Society of Chemical Industry
Selenate
Biofortification
Sodium selenate
Monogastric
Human nutrition
Cite
Citations (57)
Biofortification
Metalloid
Monogastric
Plant Breeding
Animal Breeding
Food fortification
Cite
Citations (7)
This is the second part of the special issue on Mineral Biofortification and Metal/Metalloid Accumulation in Food Crops (Hussain 2022).The agricultural sector is under major challenge to produce high yields and nutritious foods from soils that are suffering fertility decline and metal(loid) contamination (Qin et al. 2021;Silver et al. 2021).A short description of the research articles included in this part of the special issue is given below. Biofortification using fertilisersA key solution to mineral deficiencies in animals and humans is the use of mineral fertilisers for the biofortification of food/fodder crops.In a field study, ZnSO 4 application increased yield, quality and profitability of grass forages (oat, barley, annual ryegrass and triticale) cultivated in calcareous soil (Sher et al. 2022).Other methods of nutrient application, such as seed priming and foliar application, have also been recommended by researchers for the biofortification of food crops.Su et al. (2022) suggested foliar Zn application for increasing grain Zn and decreasing grain phytic acid concentrations in 19 rice cultivars.In another study on rice, seed priming with Zn and K increased seedling growth, whereas foliar Zn application increased grain yield and grain Zn concentration (Yamuangmorn et al. 2022). Ram et al. (2022) reported that integrating foliar Zn with thiamethoxam and propiconazole did not reduce their efficacy for enriching Zn in grains and controlling insect and disease attacks on field-grown wheat.In another study on wheat grown on low-Zn calcareous soils, seed priming with 0.5 M ZnSO 4 improved grain yield (by 63%) and grain Zn concentration (by 43%) compared with non-primed seeds (Rehman et al. 2022).
Biofortification
Monogastric
Metalloid
Plant Breeding
Animal Breeding
Food fortification
Natural Product Research
Cite
Citations (1)