Systematic Characterization of Autophagy in Gestational Diabetes Mellitus
51
Citation
55
Reference
10
Related Paper
Citation Trend
Abstract:
Autophagy is a dynamic process that degrades and recycles cellular organelles and proteins to maintain cell homeostasis. Alterations in autophagy occur in various diseases; however, the role of autophagy in gestational diabetes mellitus (GDM) is unknown. In the present study, we characterized the roles and functions of autophagy in GDM patient samples and extravillous trophoblasts cultured with glucose. We found significantly enhanced autophagy in GDM patients. Moreover, high glucose levels enhanced autophagy and cell apoptosis, reducing proliferation and invasion, and these effects were ameliorated through knockdown of ATG5. Genome-wide 5-hydroxymethylcytosine data analysis further revealed the epigenomic regulatory circuitry underlying the induced autophagy and apoptosis in GDM and preeclampsia. Finally, RNA sequencing was performed to identify gene expression changes and critical signaling pathways after silencing of ATG5. Our study has demonstrated the substantial functions of autophagy in GDM and provides potential therapeutic targets for the treatment of GDM patients.Parthenolide
Sesquiterpene lactone
Ectopic expression
Bafilomycin
Cite
Citations (17)
Autophagy is an evolutionarily conserved process that degrades subcellular constituents. Mammalian cells undergo two types of autophagy; Atg5-dependent conventional autophagy and Atg5-independent alternative autophagy, and the molecules required for the latter type of autophagy are largely unknown. In this study, we analyzed the molecular mechanisms of genotoxic stress-induced alternative autophagy, and identified the essential role of p53 and damage-regulated autophagy modulator (Dram1). Dram1 was sufficient to induce alternative autophagy. In the mechanism of alternative autophagy, Dram1 functions in the closure of isolation membranes downstream of p53. These findings indicate that Dram1 plays a pivotal role in genotoxic stress-induced alternative autophagy.
Cite
Citations (37)
Small interfering RNA (siRNA) molecules achieve sequence- specific gene silencing through a process known as RNA interference (RNAi). Compared to other nucleic acid-based therapeutics aimed at post-transcriptional gene silencing, such as antisense oligodeoxynucleotides, siRNA molecules achieve greater magnitude and duration of gene silencing at significantly lower doses. While the duration of gene knockdown by siRNA typically lasts around 1 week in rapidly dividing cells, recent reports of knockdown lasting for several weeks in nondividing cells indicate that dilution due to cell division may be a limiting factor in rapidly dividing cells. To determine if cell division directly impacts the duration of gene knockdown by siRNA, we chose to investigate the kinetics of siRNA-mediated gene silencing in luciferase-expressing cell lines with different observed doubling times using noninvasive bioluminescent imaging and a mathematical model of siRNA delivery and function. In vitro and in vivo, the duration of gene knockdown is inversely proportional to the rate of cell division. Consistent with previous reports, luciferase protein levels recover to pre-treatment values within less than 1 week in rapidly dividing cell lines, but take longer than 3 weeks to return to steady-state levels in nondividing fibroblasts. Similar results are observed in vivo, with knockdown lasting around 1 week in subcutaneous tumors in A/J mice and 3-4 weeks in the nondividing hepatocytes of BALB/c mice. These data indicate that dilution due to cell division, and not intracellular siRNA half-life, governs the duration of gene silencing under these conditions. Here, we will present our latest results describing the effects of cell doubling time, siRNA stability, and dosing schedule on siRNA- mediated gene silencing. Specifically, we will investigate whether the duration of knockdown using chemically modified siRNA molecules exhibits a similar dependence on cell doubling time. The implications of these findings will be highlighted using model calculations to determine the dosing schedule required to maintain persistent silencing of target proteins and to predict when maximum mRNA or protein knockdown will occur, an especially important factor when trying to observe a therapeutic effect resulting from protein knockdown. The approach of bioluminescent imaging combined with mathematical modeling provides insights into siRNA function that will hopefully be of practical use for both researchers and clinicians alike.
Cite
Citations (1)
Autophagosome
Cite
Citations (0)
Autophagy is a dynamic process that degrades and recycles cellular organelles and proteins to maintain cell homeostasis. Alterations in autophagy occur in various diseases; however, the role of autophagy in gestational diabetes mellitus (GDM) is unknown. In the present study, we characterized the roles and functions of autophagy in GDM patient samples and extravillous trophoblasts cultured with glucose. We found significantly enhanced autophagy in GDM patients. Moreover, high glucose levels enhanced autophagy and cell apoptosis, reducing proliferation and invasion, and these effects were ameliorated through knockdown of ATG5. Genome-wide 5-hydroxymethylcytosine data analysis further revealed the epigenomic regulatory circuitry underlying the induced autophagy and apoptosis in GDM and preeclampsia. Finally, RNA sequencing was performed to identify gene expression changes and critical signaling pathways after silencing of ATG5. Our study has demonstrated the substantial functions of autophagy in GDM and provides potential therapeutic targets for the treatment of GDM patients.
Cite
Citations (51)
In the mammalian system, cell death is often preceded or accompanied by autophagic vacuolization, a finding that initially led to the widespread belief that so-called "autophagic cell death" would be mediated by autophagy. Thanks to the availability of genetic tools to disable the autophagic machinery, it has become clear over recent years that autophagy usually constitutes a futile attempt of dying cells to adapt to lethal stress rather than a mechanism to execute a cell death program. Recently, we systematically addressed the question as to whether established or prospective anticancer agents may induce "autophagic cell death". Although a considerable portion among the 1,400 compounds that we evaluated induced autophagic puncta and actually increased autophagic flux, not a single one turned out to kill tumor cells through the induction of autophagy. Thus, knockdown of essential autophagy genes (such as ATG5 and ATG7) failed to prevent and rather accelerated chemotherapy-induced cell death, in spite of the fact that this manipulation efficiently inhibits autophagosome formation. Herein, we review these finding and-polemically-raise doubts as to the very existence of "autophagic cell death".
Autophagosome
Vacuolization
Cite
Citations (283)
Cite
Citations (17)
Autophagy and apoptosis play important roles in the development, cellular homeostasis and, especially, oncogenesis of mammals. They may be triggered by common upstream signals, resulting in combined autophagy and apoptosis. In other instances, they may be mutually exclusive. Recent studies have suggested possible molecular mechanisms for crosstalk between autophagy and apoptosis. Bcl-2 and Bcl-xL, the well-characterized apoptosis guards, appear to be important factors in autophagy, inhibiting Beclin 1-mediated autophagy by binding to Beclin 1. In addition, Beclin 1, Bcl-2 and Bcl-xL can cooperate with Atg5 or Ca(2+) to regulate both autophagy and apoptosis. Thus, Bcl-2 and Bcl-xL represent a molecular link between autophagy and apoptosis. Here, we discuss the possible roles of Bcl-2 and Bcl-xL in apoptosis and autophagy, and the crosstalk between them.
Crosstalk
Cite
Citations (394)
Cite
Citations (27)
Autophagy degrades cellular components and organelles through a cooperative process involving autophagosomes and lysosomes. Although autophagy is known to mainly regulate the turnover of cellular components, the role of autophagy in melanogenesis has not been well addressed. Here, we show that inhibition of autophagy suppresses the antimelanogenesis activity of resveratrol (RSV), a well-known antimelanogenic agent. RSV strongly increased autophagy in melanocytes. However, the depletion of ATG5 significantly suppressed RSV-mediated antimelanogenesis as well as RSV-induced autophagy in melanocytes. Moreover, suppression of ATG5 retrieved the RSV-mediated downregulation of tyrosinase and TRP1 in α-MSH-treated cells. Most importantly, electron microscopy analysis revealed that autophagosomes engulfed melanin or melanosomes after combined treatment of α-MSH and RSV. Taken together, these results suggest that RSV-mediated autophagy regulates melanogenesis.
Melanosome
Organelle
Cite
Citations (41)