Strigolactones affect tomato hormone profile and somatic embryogenesis
22
Citation
70
Reference
10
Related Paper
Citation Trend
Keywords:
Strigolactone
Plant hormone
Reprogramming
Cite
Citations (36)
Tubercle
Industrial crop
Solanum tuberosum
Glycoalkaloid
Cite
Citations (7)
• Strigolactones are considered a novel class of plant hormones that, in addition to their endogenous signalling function, are exuded into the rhizosphere acting as a signal to stimulate hyphal branching of arbuscular mycorrhizal (AM) fungi and germination of root parasitic plant seeds. Considering the importance of the strigolactones and their biosynthetic origin (from carotenoids), we investigated the relationship with the plant hormone abscisic acid (ABA). • Strigolactone production and ABA content in the presence of specific inhibitors of oxidative carotenoid cleavage enzymes and in several tomato ABA-deficient mutants were analysed by LC-MS/MS. In addition, the expression of two genes involved in strigolactone biosynthesis was studied. • The carotenoid cleavage dioxygenase (CCD) inhibitor D2 reduced strigolactone but not ABA content of roots. However, in abamineSG-treated plants, an inhibitor of 9-cis-epoxycarotenoid dioxygenase (NCED), and the ABA mutants notabilis, sitiens and flacca, ABA and strigolactones were greatly reduced. The reduction in strigolactone production correlated with the downregulation of LeCCD7 and LeCCD8 genes in all three mutants. • The results show a correlation between ABA levels and strigolactone production, and suggest a role for ABA in the regulation of strigolactone biosynthesis.
Cite
Citations (234)
In nodally-rooting prostrate herbs the outgrowth of shoot axillary buds is highly influenced by the supply of a branch-promoting signal exported from nodal roots to the shoot. The aim of this study was to establish whether cytokinin could be a candidate for the positive component within this net root stimulus (NRS). The approach taken was based on the notion that should cytokinin be the activating signal, then the effects on bud outgrowth induced by exogenous supply of cytokinin (6-benzylaminopurine (BAP)) to plants should largely mimic the responses observed when experimental manipulations alter intra-plant supply of NRS. In Trifolium repens experimental results consistently indicated that supply of BAP into the stem vasculature induced responses mimicking those induced by manipulation of NRS supply: it induced the outgrowth of a similar number of distal axillary buds, activated buds to a similar extent, had similar properties of transport along stems, induced a similar dose dependent response in distal buds and also had the ability to induce bud outgrowth in P-deficient plants. These findings indicate a requirement for further detailed hormonal analytical work to confirm this result and identify the nature of the cytokinin(s) involved in the NRS signalling pathway.
Strigolactone
Trifolium repens
Apical dominance
Lateral shoot
Cite
Citations (3)
Strigolactones, phytohormones with diverse signaling activities, have a common structure consisting of two lactones connected by an enol-ether bridge. Strigolactones derive from carotenoids via a pathway involving the carotenoid cleavage dioxygenases 7 and 8 (CCD7 and CCD8) and the iron-binding protein D27. We show that D27 is a β-carotene isomerase that converts all-trans-β-carotene into 9-cis-β-carotene, which is cleaved by CCD7 into a 9-cis-configured aldehyde. CCD8 incorporates three oxygens into 9-cis-β-apo-10'-carotenal and performs molecular rearrangement, linking carotenoids with strigolactones and producing carlactone, a compound with strigolactone-like biological activities. Knowledge of the structure of carlactone will be crucial for understanding the biology of strigolactones and may have applications in combating parasitic weeds.
Strigolactone
Plant hormone
Branching (polymer chemistry)
Cite
Citations (824)
Significance Strigolactone plays a vital role in plant growth and development, but its response genes remain to be identified. In this study, we found that cytokinin content is markedly increased in the strigolactone signaling mutant d53 , and that OsCKX9 , which encodes a cytokinin oxidase to catalyze the degradation of cytokinin, functions as a primary strigolactone-responsive gene to regulate rice tillering, plant height, and panicle size, likely via a secondary response gene, OsRR5 , which encodes a cytokinin-inducible rice type-A response regulator, demonstrating that strigolactone regulates rice shoot architecture through enhanced cytokinin catabolism by modulating OsCKX9 expression.
Strigolactone
Catabolism
Response regulator
Panicle
Cite
Citations (149)
Lateral shoot
Bud
Cite
Citations (6)
Abstract Previous studies have shown that DWARF10 (D10) is a rice ortholog of MAX4/RMS1/DAD1 , encoding a carotenoid cleavage dioxygenase and functioning in strigolactones/strigolactone‐derivatives (SL) biosynthesis. Here we use D10 ‐ RNA interference (RNAi) transgenic plants similar to d10 mutant in phenotypes to investigate the interactions among D10 , auxin and cytokinin in regulating rice shoot branching. Auxin levels in node 1 of both decapitated D10 ‐RNAi and wild type plants decreased significantly, showing that decapitation does reduce endogenous auxin concentration, but decapitation has no clear effects on auxin levels in node 2 of the same plants. This implies that node 1 may be the location where a possible interaction between auxin and D10 gene would be detected. D10 expression in node 1 is inhibited by decapitation, and this inhibition can be restored by exogenous auxin application, indicating that D10 may play an important role in auxin regulation of SL. The decreased expression of most OsPINs in shoot nodes of D10 ‐RNAi plants may cause a reduced auxin transport capacity. Furthermore, effects of auxin treatment of decapitated plants on the expression of cytokinin biosynthetic genes suggest that D10 promotes cytokinin biosynthesis by reducing auxin levels. Besides, in D10 ‐RNAi plants, decreased storage cytokinin levels in the shoot node may partly account for the increased active cytokinin contents, resulting in more tillering phenotypes.
Strigolactone
Rice plant
Cite
Citations (71)
Abstract Tomato production is influenced by shoot branching, which is controlled by different hormones. Here we produced tomato plants overexpressing the cytokinin-deactivating gene CYTOKININ OXYDASE 2 ( CKX2 ). CKX2 -overexpressing (CKX2-OE) plants showed an excessive growth of axillary shoots, the opposite phenotype expected for plants with reduced cytokinin content, as evidenced by LC-MS analysis and ARR5-GUS staining. The TCP transcription factor SlBRC1b was downregulated in the axillary buds of CKX2-OE and its excessive branching was dependent on a functional version of the GRAS-family gene LATERAL SUPPRESSOR ( LS ). Grafting experiments indicated that increased branching in CKX2-OE plants is unlikely to be mediated by root-derived signals. Crossing CKX2-OE plants with transgenic antisense plants for the strigolactone biosynthesis gene CAROTENOID CLEAVAGE DIOXYGENASE ( CCD7 -AS) produced an additive phenotype, indicating independent effects of cytokinin and strigolactones on increased branching. On the other hand, CKX2-OE plants showed reduced polar auxin transport and their bud outgrowth was reduced when combined with auxin mutants. Accordingly, CKX2-OE basal buds did not respond to auxin applied in the decapitated apex. Our results suggest that tomato shoot branching depends on a fine-tuning of different hormonal balances and that perturbations in the auxin status could compensate for the reduced cytokinin levels in CKX2-OE plants.
Strigolactone
Branching (polymer chemistry)
Cite
Citations (18)