logo
    <b>Postprandial release of motilin in relation to the interdigestive motor complex in </b><b>man </b>
    3
    Citation
    4
    Reference
    10
    Related Paper
    Abstract:
    The efleot of a. test breakfast, ingested at the refractory period following a duodenal activity front (phase 3 of the migrating motor complex), on plasma motilin levels was studied in eight subjects.A further group of subjects remained fasted and acted as controls.Plasma motilin levels increased significantly following the ingestion of the breakfast, levels also being significantly higher than in the controls.KEY WORDS motilin / postprandial /
    Keywords:
    Motilin
    The plasma cholecystokinin (CCK) response to a test meal was studied in 16 control subjects and 15 patients with noninsulin-dependent diabetes mellitus (NIDDM). Basal CCK levels were approximately 1 pmol in both groups. However, after the test meal, plasma CCK levels were 2-fold greater in the controls when compared to the diabetics. In controls, CCK levels maximally increased by 5.6 +/- 0.8 pmol (mean +/- SEM) 10 min after feeding, whereas in the NIDDM patients this value was 1.9 +/- 0.6 pmol (P < 0.001). After the test meal, the normal subjects showed no postprandial rise in blood glucose, whereas the diabetic patient showed a rise of 2.6 +/- 0.7 mmol. To determine whether the decreased CCK levels may have been related to the postprandial hyperglycemia, 7 diabetic subjects were infused with CCK. With this CCK infusion, postprandial glucose levels did not rise. These data suggest, therefore: 1) a role for cholecystokinin in regulating postprandial hyperglycemia in man, 2) abnormalities in CCK secretion occur in NIDDM and may contribute to the hyperglycemia seen in this disease.
    Basal (medicine)
    Citations (55)
    Corticosterone (CORT) and other glucocorticoids cause peripheral insulin resistance and compensatory increases in β-cell mass. A prolonged high-fat diet (HFD) induces insulin resistance and impairs β-cell insulin secretion. This study examined islet adaptive capacity in rats treated with CORT and a HFD. Male Sprague-Dawley rats (age ∼6 weeks) were given exogenous CORT (400 mg/rat) or wax (placebo) implants and placed on a HFD (60% calories from fat) or standard diet (SD) for 2 weeks (N = 10 per group). CORT-HFD rats developed fasting hyperglycemia (&gt;11 mM) and hyperinsulinemia (∼5-fold higher than controls) and were 15-fold more insulin resistant than placebo-SD rats by the end of ∼2 weeks (Homeostatic Model Assessment for Insulin Resistance [HOMA-IR] levels, 15.08 ± 1.64 vs 1.0 ± 0.12, P &lt; .05). Pancreatic β-cell function, as measured by HOMA-β, was lower in the CORT-HFD group as compared to the CORT-SD group (1.64 ± 0.22 vs 3.72 ± 0.64, P &lt; .001) as well as acute insulin response (0.25 ± 0.22 vs 1.68 ± 0.41, P &lt; .05). Moreover, β- and α-cell mass were 2.6- and 1.6-fold higher, respectively, in CORT-HFD animals compared to controls (both P &lt; .05). CORT treatment increased p-protein kinase C-α content in SD but not HFD-fed rats, suggesting that a HFD may lower insulin secretory capacity via impaired glucose sensing. Isolated islets from CORT-HFD animals secreted more insulin in both low and high glucose conditions; however, total insulin content was relatively depleted after glucose challenge. Thus, CORT and HFD, synergistically not independently, act to promote severe insulin resistance, which overwhelms islet adaptive capacity, thereby resulting in overt hyperglycemia.
    Hyperinsulinemia
    Corticosterone
    Citations (46)
    The effect of 48 h of fasting in C57B1/6J-ob/ob and +/+ mice on body weight (BW), blood glucose (BG), serum immunreactive insulin (IRI), plasma immunoreactive glucagon (IRG) and on tissue levels of cyclic adenosine monophosphate (cAMP) were studied. Both groups of mice lost weight and demonstrated a decrease in BG and IRI with fasting. However, the BG and IRI of the ob/ob animals were initially highter and remained higher than those of the 2% of their initial weight while the +/+ lost 14 %. The +/+ mice exhibited an increase in cAMP levels in skeletal muscle, fat and liver with fasting, while the ob/ob mice had increased levels of cAMP in fat, but not in muscle. They also had a paradoxical decrease in liver cAMP levels with fasting, and associated with this was the lack of stimulation of glycogenolysis. Glycogenolysis was significant in the livers of fasted +/+ mice. The plasma IRG levels of the fed ob/ob mice were significantly higher (1.8) times) than those of the fed +/+ mice. Islet cAMP levels were decreased with fasting in ob/ob mice. However, the levels were significantly higher in 48-h faster ob/ob mice compared to the fasted +/+ group. The apparent paradoxical response to fasting observed in the livers of the ob/ob mice remains unexplained.
    Glycogenolysis
    Citations (38)
    Diabetes mellitus is frequently associated with reduced levels of TSH, PRL, GH, and gonadotropins. In this study we have wanted to determine whether chemically induced diabetes mellitus is associated with a decreased hypothalamic release of TRH. Male rats were made diabetic with streptozotocin (STZ; 65 mg/kg), whereas controls received vehicle. After 2 weeks, STZ diabetic rats had 25% lower body weights, 3.5-fold higher blood glucose, and 40-60% lower plasma TSH, T3, and T4 levels than controls. The plasma T4 dialyzable fraction had increased 2.5-fold in STZ diabetic rats, and the plasma free T4 concentration was similar to that in controls. Thus, treatment with STZ results in decreased plasma TSH and T4 levels, but does not reduce free T4 concentrations. The content of TRH in hypothalami of 2-week STZ diabetic rats was similar to that in controls, but in vitro these hypothalami released less TRH than those of control rats. In 2-week STZ diabetic rats, TRH in hypophysial stalk blood was 30% lower than that in control rats. The in vitro TRH secretion from hypothalami of untreated rats was dependent on the glucose concentrations in the incubation medium; increasing the glucose concentration from 10 to 30 mM did not alter TRH secretion, but basal TRH release increased in the absence of glucose. In conclusion, STZ-induced diabetes in the rat is associated with reduced hypothalamic secretion of TRH, which, in turn, may be responsible for the reduced plasma TSH and thyroid hormone levels. Furthermore, it is suggested that the inhibitory effect of STZ-induced diabetes on TRH secretion is probably not due to hyperglycemia.
    Basal (medicine)
    Hypothalamic–pituitary–thyroid axis
    Citations (11)
    Abstract Dysregulation of the adipoinsular axis in male obese Zucker diabetic fatty (ZDF; fa/fa) rats, a model of type 2 diabetes, results in chronic hyperinsulinemia and increased de novo lipogenesis in islets, leading to β-cell failure and diabetes. Diazoxide (DZ; 150 mg/kg·d), an inhibitor of insulin secretion, was administered to prediabetic ZDF animals for 8 wk as a strategy for prevention of diabetes. DZ reduced food intake (P &lt; 0.02) and rate of weight gain only in ZDF rats (P &lt; 0.01). Plasma insulin response to glucose load was attenuated in DZ-Zucker lean rats (ZL; P &lt; 0.01), whereas DZ-ZDF had higher insulin response to glucose than controls (P &lt; 0.001). DZ improved hemoglobin A1c (P &lt; 0.001) and glucose tolerance in ZDF (P &lt; 0.001), but deteriorated hemoglobin A1c in ZL rats (P &lt; 0.02) despite normal tolerance in the fasted state. DZ lowered plasma leptin (P &lt; 0.001), free fatty acid, and triglyceride (P &lt; 0.001) levels, but increased adiponectin levels (P &lt; 0.02) only in ZDF rats. DZ enhanced β3-adrenoreceptor mRNA (P &lt; 0.005) and adenylate cyclase activity (P &lt; 0.01) in adipose tissue from ZDF rats only, whereas it enhanced islet β3- adrenergic receptor mRNA (P &lt; 0.005) but paradoxically decreased islet adenylate cyclase activity (P &lt; 0.005) in these animals. Islet fatty acid synthase mRNA (P &lt; 0.03), acyl coenzyme A carboxylase mRNA (P &lt; 0.01), uncoupling protein-2 mRNA (P &lt; 0.01), and triglyceride content (P &lt; 0.005) were only decreased in DZ-ZDF rats, whereas islet insulin mRNA and insulin content were increased in DZ-ZDF (P &lt; 0.01) and DZ-ZL rats (P &lt; 0.03). DZ-induced β-cell rest improved the lipid profile, enhanced the metabolic efficiency of insulin, and prevented β-cell dysfunction and diabetes in diabetes-prone animals. This therapeutic strategy may be beneficial in preventing β-cell failure and progression to diabetes in humans.
    Hyperinsulinemia
    Lipogenesis
    Diazoxide
    Citations (39)
    In normal rats, females have higher circulating GH-binding protein (GHBP) levels than males, whereas in the GH-deficient dwarf (Dw) rat, there is no sexual dimorphism in plasma GHBP, suggesting that GH secretion may be involved in this difference. In order to study the relationship between gonadal steroids and GH on GHBP and GH receptor regulation, the levels of plasma GHBP, hepatic bovine GH, and human GH (hGH) binding as well as GHBP and GH receptor messenger RNA (mRNA) have now been studied in normal, Dw, hypophysectomized (Hx), or ovariectomized (Ovx) rats, subjected to different GH and gonadal steroid exposure. In normal male rats, estradiol (E2, 12.5-25 micrograms/day for 1 or 2 weeks) markedly increased plasma GHBP and hepatic hGH, and bGH binding. These effects of E2 were diminished in Dw rats, absent in Hx rats, but restored in Hx rats given exogenous hGH. Plasma GHBP rose in female rats given E2, and fell in females given the anti-estrogen tamoxifen. Ovx animals had lower plasma GHBP and hepatic GH binding which was reversed by E2, but not testosterone treatment. Continuous hGH infusions in Ovx rats restored hepatic GH binding, and increased plasma GHBP. In Dw males, hGH increased plasma GHBP and hepatic GH binding, whereas testosterone had no effect on GHBP or GH receptors and did not affect their up-regulation by hGH. Hepatic levels of GHBP-, and GH receptor mRNA transcripts showed the same trends in response to steroid or GH treatment, but the differences were rarely significant, except in Ovx animals which had higher GHBP mRNA transcripts after GH or E2 treatment. Thus E2 and GH increase both plasma GHBP and hepatic GH receptor binding. GH up-regulates GHBP in the absence of E2, whereas E2 treatment does not raise GHBP in the absence of GH. Whereas some of the effects of estrogen could be mediated via alterations in GH secretion, estrogen may also directly influence GHBP production at the liver, but only in the presence of GH.
    Growth hormone-binding protein
    Sexual dimorphism
    Citations (57)
    Patients with noninsulin-dependent diabetes mellitus (NIDDM) have both preprandial and postprandial hyperglycemia. To determine the mechanism responsible for the postprandial hyperglycemia, insulin secretion, insulin action, and the pattern of carbohydrate metabolism after glucose ingestion were assessed in patients with NIDDM and in matched nondiabetic subjects using the dual isotope and forearm catheterization techniques. Prior to meal ingestion, hepatic glucose release was increased (P less than 0.001) in the diabetic patients measured using [2-3H] or [3-3H] glucose. After meal ingestion, patients with NIDDM had excessive rates of systemic glucose entry (1,316 +/- 56 vs. 1,018 +/- 65 mg/kg X 7 h, P less than 0.01), primarily owing to a failure to suppress adequately endogenous glucose release (680 +/- 50 vs. 470 +/- 32 mg/kg X 7 h, P less than 0.01) from its high preprandial level. Despite impaired suppression of endogenous glucose production during a hyperinsulinemic glucose clamp (P less than 0.001) and decreased postprandial C-peptide response (P less than 0.05) in NIDDM, percent suppression of hepatic glucose release after oral glucose was comparable in the diabetic and nondiabetic subjects (45 +/- 3 vs. 39 +/- 2%). Although new glucose formation from meal-derived three-carbon precursors (53 +/- 3 vs. 40 +/- 7 mg/kg X 7 h, P less than 0.05) was greater in the diabetic patients, it accounted for only a minor part of this excessive postprandial hepatic glucose release. Postprandial hyperglycemia was exacerbated by the lack of an appropriate increase in glucose uptake whether measured isotopically or by forearm glucose uptake. Thus as has been proposed for fasting hyperglycemia, excessive hepatic glucose release and impaired glucose uptake are involved in the pathogenesis of postprandial hyperglycemia in patients with NIDDM.
    Carbohydrate Metabolism
    Citations (277)
    The role of the hypothalamic paraventricular nucleus (PVN) in thyroid hormone regulation of TSH synthesis during hypothyroidism was studied in adult male rats that were normal (n = 10), had primary hypothyroidism with sham lesions in the hypothalamus (n = 17), and had primary hypothyroidism with PVN lesions (n = 14). Two and 4 weeks after initiation of treatment, plasma levels of thyroid hormones (TSH, corticosterone and PRL) and pituitary content of TSH beta and alpha-subunit mRNA were measured. TRH mRNA levels in the PVN were determined by in situ hybridization histochemistry. At 2 weeks, despite a decrease in plasma free T4 in both hypothyroid groups, plasma TSH levels increased, but to a lesser degree, in the hypothyroid PVN lesioned compared to hypothyroid sham-lesioned group (7.8 +/- 1.3 vs. 20.5 +/- 1.1 ng/dl; P less than 0.05). Similarly, at 4 weeks, the hypothyroid PVN-lesioned group demonstrated a blunted TSH response compared to the hypothyroid sham-lesioned group (6.8 +/- 0.7 vs. 24.0 +/- 1.3 ng/dl; P less than 0.05). Plasma corticosterone and PRL did not significantly differ between sham-lesioned and PVN-lesioned groups. TSH beta mRNA levels markedly increased in hypothyroid sham-lesioned rats compared to those in euthyroid controls at 2 weeks (476 +/- 21% vs. 100 +/- 39%; P less than 0.05) and 4 weeks (1680 +/- 270% vs. 100 +/- 35%; P less than 0.05). In contrast, TSH beta mRNA levels did not increase with hypothyroidism in the PVN-lesioned group compared to those in euthyroid controls at 2 weeks (140 +/- 16%, P = NS) and only partially increased at 4 weeks (507 +/- 135; P less than 0.05). alpha mRNA levels at 4 weeks markedly increased in hypothyroid sham-lesioned rats compared to those in euthyroid controls (1121 +/- 226% vs. 100 +/- 48%; P less than 0.05), but did not increase in the hypothyroid PVN-lesioned rats (61 +/- 15%; P = NS). TRH mRNA in the PVN increased in the hypothyroid sham-lesioned rats compared to those in euthyroid controls (16.6 +/- 1.3 vs. 4.8 +/- 1.2 arbitrary densitometric units; P less than 0.05), and TRH mRNA was not detectable in the PVN of hypothyroid-lesioned rats at 2 weeks. In summary, lesions in rat PVN prevented the full increase in plasma TSH, pituitary TSH beta mRNA, and alpha mRNA levels in response to hypothyroidism. Thus, factors in the PVN are important in thyroid hormone feedback regulation of both TSH synthesis and secretion.
    Citations (48)
    Diabetes mellitus is frequently associated with reduced levels of TSH, PRL, GH, and gonadotropins. In this study we have wanted to determine whether chemically induced diabetes mellitus is associated with a decreased hypothalamic release of TRH. Male rats were made diabetic with streptozotocin (STZ; 65 mg/kg), whereas controls received vehicle. After 2 weeks, STZ diabetic rats had 25% lower body weights, 3.5-fold higher blood glucose, and 40-60% lower plasma TSH, T3, and T4 levels than controls. The plasma T4 dialyzable fraction had increased 2.5-fold in STZ diabetic rats, and the plasma free T4 concentration was similar to that in controls. Thus, treatment with STZ results in decreased plasma TSH and T4 levels, but does not reduce free T4 concentrations. The content of TRH in hypothalami of 2-week STZ diabetic rats was similar to that in controls, but in vitro these hypothalami released less TRH than those of control rats. In 2-week STZ diabetic rats, TRH in hypophysial stalk blood was 30% lower than that in control rats. The in vitro TRH secretion from hypothalami of untreated rats was dependent on the glucose concentrations in the incubation medium; increasing the glucose concentration from 10 to 30 mM did not alter TRH secretion, but basal TRH release increased in the absence of glucose. In conclusion, STZ-induced diabetes in the rat is associated with reduced hypothalamic secretion of TRH, which, in turn, may be responsible for the reduced plasma TSH and thyroid hormone levels. Furthermore, it is suggested that the inhibitory effect of STZ-induced diabetes on TRH secretion is probably not due to hyperglycemia.
    Basal (medicine)
    Hypothalamic–pituitary–thyroid axis
    Citations (45)