Response Properties Of Interneurons Of The Cricket Cercal Sensory System Are Conserved In Spite Of Changes In Peripheral Receptors During Maturation
44
Citation
41
Reference
10
Related Paper
Citation Trend
Abstract:
ABSTRACT During postembryonic development of the cricket, the total number of filiform hair sensilla in the cereal sensory system increases approximately 40-fold. In addition, individual receptor hairs grow in size, changing the transducer properties of the sensilla and, thereby, the information transmitted to the central nervous system (CNS) by the sensory neurons. Interneurons MGI and 10-3 receive monosynaptic inputs from these sensory neurons and send outputs to anterior ganglia. We show that, in spite of the changes in the periphery, the response properties of these interneurons are relatively constant during development. The two interneurons differ in their frequency response, intensity response and rate of response decrement. Their respective response properties are conserved during the postembryonic period. The results suggest that systematic rearrangement of the sensory neuron-to-interneuron synapses plays an important role in maintaining a constant output of this sensory system to higher centers of the CNS during maturation of the cricket.Keywords:
Interneuron
Sensory neuron
ABSTRACT During postembryonic development of the cricket, the total number of filiform hair sensilla in the cereal sensory system increases approximately 40-fold. In addition, individual receptor hairs grow in size, changing the transducer properties of the sensilla and, thereby, the information transmitted to the central nervous system (CNS) by the sensory neurons. Interneurons MGI and 10-3 receive monosynaptic inputs from these sensory neurons and send outputs to anterior ganglia. We show that, in spite of the changes in the periphery, the response properties of these interneurons are relatively constant during development. The two interneurons differ in their frequency response, intensity response and rate of response decrement. Their respective response properties are conserved during the postembryonic period. The results suggest that systematic rearrangement of the sensory neuron-to-interneuron synapses plays an important role in maintaining a constant output of this sensory system to higher centers of the CNS during maturation of the cricket.
Interneuron
Sensory neuron
Cite
Citations (44)
Studying the development and mechanisms of sensory perception is challenging in organisms with complex neuronal networks. The worm Caenorhabditis elegans possesses a simple neuronal network of 302 neurons that includes 60 ciliated sensory neurons (CSNs) for detecting external sensory input. C. elegans is thus an excellent model in which to study sensory neuron development, function, and behavior. We have generated a genetic rescue system that allows in vivo analyses of isolated CSNs at both cellular and systemic levels. We used the RFX transcription factor DAF-19, a key regulator of ciliogenesis. Mutations in daf-19 result in the complete absence of all sensory cilia and thus of external sensory input. In daf-19 mutants, we used cell-specific rescue of DAF-19 function in selected neurons, thereby generating animals with single, fully functional CSNs. Otherwise and elsewhere these animals are completely devoid of any environmental input through cilia. We demonstrated the rescue of fully functional, single cilia using fluorescent markers, sensory behavioral assays, and calcium imaging. Our technique, functional rescue in single sensory cilia (FRISSC), can thus cell-autonomously and cell-specifically restore the function of single sensory neurons and their ability to respond to sensory input. FRISSC can be adapted to many different CSNs and thus constitutes an excellent tool for studying sensory behaviors, both in single animals and in populations of worms. FRISSC will be very useful for the molecular dissection of sensory perception in CSNs and for the analysis of the developmental aspects of ciliogenesis.
Ciliogenesis
mechanosensation
Sensory neuron
Cite
Citations (15)
Cite
Citations (160)
Animals must adapt to internal and external environments and properly respond to the situations to survive, grow, and reproduce. Sensory organs play pivotal roles in obtaining information from the environment, and the nervous system is indispensable for integrating different types of sensory information and determining appropriate behavioral responses, such as escape, aggression, and reproductive behavior. The central nervous system (brain and spinal cord) receives environmental information from sensory organs and sends motor commands to the muscles via the peripheral nervous system. Eels, like other fish, possess several sorts of sensory organs and the nervous system to adapt in response to environmental conditions. In this chapter, we provide an outline of the sensory organs and nervous system of teleost fish, focusing on the features seen in Japanese eels.
Cite
Citations (0)
The ultrastructural differentiation and central projection of identified bristle mechanosensory neurons were examined in Drosophila mutants lacking action potentials. Two mutations, parats1 and napts, are known to block axonal conduction in centrally located neurons at high temperatures. Their effects on epithelial sensory cells, which are derived from imaginal disks during pupation, have not been determined. Furthermore, the parats1 napts double-mutant flies are lethal at all temperatures; thus the synergistic effect of these mutations on neurons has not yet been studied. It is possible to examine the above questions in genetic mosaics. By monitoring a reflex response involving identified bristle sensory cells, we found that the 2 mutations exert similar effects on these epithelial sensory cells as seen in central neurons. This also indicates that the action potential mechanisms in both epithelial sensory cells and central neurons are under similar genetic control. The parats1 napts double-mutant sensory cells in mosaics are nonfunctional at all temperatures, providing an opportunity to examine, at the single cell level, the development of neurons with activity block. Ultrastructural specializations typical of epithelial sensory cells were found in the double-mutant cells. Cobalt backfilling experiments showed that central projections of these nonfunctional sensory cells were not altered, as compared with the active contralateral sensory cells. Therefore, blockage of the action potential mechanism in individual sensory cells has no effect on their pathfinding and arborization.
Sensory neuron
Bristle
Mechanoreceptor
Cite
Citations (33)
Abstract The nonselective cation channel transient receptor potential ankyrin 1 (TRPA1) is known to be a key contributor to both somatosensation and pain. Recent studies have implicated TRPA1 in additional physiologic functions and have also suggested that TRPA1 is expressed in nonneuronal tissues. Thus, it has become necessary to resolve the importance of TRPA1 expressed in primary sensory neurons, particularly since previous research has largely used global knock-out animals and chemical TRPA1 antagonists. We therefore sought to isolate the physiological relevance of TRPA1 specifically within sensory neurons. To accomplish this, we used Advillin-Cre mice, in which the promoter for Advillin is used to drive expression of Cre recombinase specifically within sensory neurons. These Advillin-Cre mice were crossed with Trpa1 fl/fl mice to generate sensory neuron-specific Trpa1 knock-out mice. Here, we show that tissue-specific deletion of TRPA1 from sensory neurons produced strong deficits in behavioral sensitivity to mechanical stimulation, while sensitivity to cold and heat stimuli remained intact. The mechanical sensory deficit was incomplete compared to the mechanosensory impairment of TRPA1 global knock-out mice, in line with the incomplete (∼80%) elimination of TRPA1 from sensory neurons in the tissue-specific Advillin-Cre knock-out mice. Equivalent findings were observed in tissue-specific knock-out animals originating from two independently-generated Advillin-Cre lines. As such, our results show that sensory neuron TRPA1 is required for mechanical, but not cold, responsiveness in noninjured skin.
TRPM8
Sensory neuron
Sensory stimulation therapy
Ankyrin
Mechanotransduction
Cre recombinase
Cite
Citations (56)
Sensory neuron
Developmental Biology
Cite
Citations (414)
Sensory neurons were dissociated from trigeminal ganglia or from dorsal root ganglia of rats, grown in culture, and examined for expression of properties of pain sensory cells. Many sensory neurons in culture are excited by low concentrations of capsaicin, reportedly a selective stimulus for pain sensory neurons. Many are excited by bradykinin, sensitized by prostaglandin E2, or specifically stained by an antiserum against substance P. These experiments provide a basis for the study of pain mechanisms in cell culture.
Sensory neuron
Stimulus (psychology)
Nociceptor
Capsaicin
Dorsal root ganglion
Cite
Citations (238)
BACKGROUND: Trigeminal sensory neurons detect thermal and mechanical stimuli in the skin through their elaborately arborized peripheral axons. We investigated the developmental mechanisms that determine the size and shape of individual trigeminal arbors in zebrafish and analyzed how these interactions affect the functional organization of the peripheral sensory system.RESULTS: Time-lapse imaging indicated that direct repulsion between growing axons restricts arbor territories. Removal of one trigeminal ganglion allowed axons of the contralateral ganglion to cross the midline, and removal of both resulted in the expansion of spinal cord sensory neuron arbors. Generation of embryos with single, isolated sensory neurons resulted in axon arbors that possessed a vast capacity for growth and expanded to encompass the entire head. Embryos in which arbors were allowed to aberrantly cross the midline were unable to respond in a spatially appropriate way to mechanical stimuli.CONCLUSIONS: Direct repulsive interactions between developing trigeminal and spinal cord sensory axon arbors determine sensory neuron organization and control the shapes and sizes of individual arbors. This spatial organization is crucial for sensing the location of objects in the environment. Thus, a combination of undirected growth and mutual repulsion results in the formation of a functionally organized system of peripheral sensory arbors. PMID: 15886097
Sensory neuron
Trigeminal ganglion
Sensory Processing
Cite
Citations (0)
Growth cone
Neurite
Dorsal root ganglion
Sensory neuron
Fasciculation
Cite
Citations (14)