logo
    Human Immunodeficiency Virus Type 1 Variants Resistant to First- and Second-Version Fusion Inhibitors and Cytopathic in Ex Vivo Human Lymphoid Tissue
    42
    Citation
    60
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Human immunodeficiency virus type 1 (HIV-1) fusion inhibitors blocking viral entry by binding the gp41 heptad repeat 1 (HR1) region offer great promise for antiretroviral therapy, and the first of these inhibitors, T20 (Fuzeon; enfuvirtide), is successfully used in the clinic. It has been reported previously that changes in the 3-amino-acid GIV motif at positions 36 to 38 of gp41 HR1 mediate resistance to T20 but usually not to second-version fusion inhibitors, such as T1249, which target an overlapping but distinct region in HR1 including a conserved hydrophobic pocket (HP). Based on the common lack of cross-resistance and the difficulty of selecting T1249-resistant HIV-1 variants, it has been suggested that the determinants of resistance to first- and second-version fusion inhibitors may be different. To further assess HIV-1 resistance to fusion inhibitors and to analyze where changes in HR1 are tolerated, we randomized 16 codons in the HR1 region, including those making contact with HR2 codons and/or encoding residues in the GIV motif and the HP. We found that changes only at positions 37I, 38V, and 40Q near the N terminus of HR1 were tolerated. The propagation of randomly gp41-mutated HIV-1 variants in the presence of T1249 allowed the effective selection of highly resistant forms, all containing changes in the IV residues. Overall, the extent of T1249 resistance was inversely correlated to viral fitness and cytopathicity. Notably, one HIV-1 mutant showing approximately 10-fold-reduced susceptibility to T1249 inhibition replicated with wild type-like kinetics and caused substantial CD4+-T-cell depletion in ex vivo-infected human lymphoid tissue in the presence and absence of an inhibitor. Taken together, our results show that the GIV motif also plays a key role in resistance to second-version fusion inhibitors and suggest that some resistant HIV-1 variants may be pathogenic in vivo.
    Keywords:
    Enfuvirtide
    Heptad repeat
    Ex vivo
    V3 loop
    Human immunodeficiency virus type 1 (HIV-1) fusion inhibitors blocking viral entry by binding the gp41 heptad repeat 1 (HR1) region offer great promise for antiretroviral therapy, and the first of these inhibitors, T20 (Fuzeon; enfuvirtide), is successfully used in the clinic. It has been reported previously that changes in the 3-amino-acid GIV motif at positions 36 to 38 of gp41 HR1 mediate resistance to T20 but usually not to second-version fusion inhibitors, such as T1249, which target an overlapping but distinct region in HR1 including a conserved hydrophobic pocket (HP). Based on the common lack of cross-resistance and the difficulty of selecting T1249-resistant HIV-1 variants, it has been suggested that the determinants of resistance to first- and second-version fusion inhibitors may be different. To further assess HIV-1 resistance to fusion inhibitors and to analyze where changes in HR1 are tolerated, we randomized 16 codons in the HR1 region, including those making contact with HR2 codons and/or encoding residues in the GIV motif and the HP. We found that changes only at positions 37I, 38V, and 40Q near the N terminus of HR1 were tolerated. The propagation of randomly gp41-mutated HIV-1 variants in the presence of T1249 allowed the effective selection of highly resistant forms, all containing changes in the IV residues. Overall, the extent of T1249 resistance was inversely correlated to viral fitness and cytopathicity. Notably, one HIV-1 mutant showing approximately 10-fold-reduced susceptibility to T1249 inhibition replicated with wild type-like kinetics and caused substantial CD4+-T-cell depletion in ex vivo-infected human lymphoid tissue in the presence and absence of an inhibitor. Taken together, our results show that the GIV motif also plays a key role in resistance to second-version fusion inhibitors and suggest that some resistant HIV-1 variants may be pathogenic in vivo.
    Enfuvirtide
    Heptad repeat
    Ex vivo
    V3 loop
    Citations (42)
    Binding of the human immunodeficiency virus (HIV) envelope glycoprotein (Env) to the cellular CD4 receptor and a chemokine coreceptor initiates a series of conformational changes in the Env subunits gp120 and gp41. Eventually, the trimeric gp41 folds into a six-helix bundle, thereby inducing fusion of the viral and cellular membranes. C peptides derived from the C-terminal heptad repeat (CHR) of gp41 are efficient entry inhibitors as they block the six-helix bundle formation. Previously, we developed a membrane-anchored C peptide (maC46) expressed from a retroviral vector that also shows high activity against virus strains resistant to enfuvirtide (T-20), an antiviral C peptide approved for clinical use. Here, we present a systematic analysis of mutations in Env that confer resistance of HIV type 1 (HIV-1) to maC46. We selected an HIV-1 BaL strain with 10-fold reduced sensitivity to maC46 (BaL_C46) by passaging virus for nearly 200 days in the presence of gradually increasing concentrations of maC46. In comparison to wild-type BaL, BaL_C46 had five mutations at highly conserved positions in Env, three in gp120, one in the N-terminal heptad-repeat (NHR), and one in the CHR of gp41. No mutations were found in the NHR domain around the GIV motif that are known to cause resistance to enfuvirtide. Instead, maC46 resistance was found to depend on complementary mutations in the NHR and CHR that considerably favor binding of the mutated NHR to the mutated CHR over binding to maC46. In addition, resistance was highly dependent on mutations in gp120 that accelerated entry. Taken together, resistance to maC46 did not develop readily and required multiple cooperating mutations at conserved positions of the viral envelope glycoproteins gp120 and gp41.
    Enfuvirtide
    Heptad repeat
    Citations (43)
    T-20 is a synthetic peptide that potently inhibits replication of human immunodeficiency virus type 1 by interfering with the transition of the transmembrane protein, gp41, to a fusion active state following interactions of the surface glycoprotein, gp120, with CD4 and coreceptor molecules displayed on the target cell surface. Although T-20 is postulated to interact with an N-terminal heptad repeat within gp41 in a trans-dominant manner, we show here that sensitivity to T-20 is strongly influenced by coreceptor specificity. When 14 T-20-naive primary isolates were analyzed for sensitivity to T-20, the mean 50% inhibitory concentration (IC(50)) for isolates that utilize CCR5 for entry (R5 viruses) was 0.8 log(10) higher than the mean IC(50) for CXCR4 (X4) isolates (P = 0. 0055). Using NL4.3-based envelope chimeras that contain combinations of envelope sequences derived from R5 and X4 viruses, we found that determinants of coreceptor specificity contained within the gp120 V3 loop modulate this sensitivity to T-20. The IC(50) for all chimeric envelope viruses containing R5 V3 sequences was 0.6 to 0.8 log(10) higher than that for viruses containing X4 V3 sequences. In addition, we confirmed that the N-terminal heptad repeat of gp41 determines the baseline sensitivity to T-20 and that the IC(50) for viruses containing GIV at amino acid residues 36 to 38 was 1.0 log(10) lower than the IC(50) for viruses containing a G-to-D substitution. The results of this study show that gp120-coreceptor interactions and the gp41 N-terminal heptad repeat independently contribute to sensitivity to T-20. These results have important implications for the therapeutic uses of T-20 as well as for unraveling the complex mechanisms of virus fusion and entry.
    Heptad repeat
    V3 loop
    Enfuvirtide
    HR212, a recombinant protein composed of the heptad repeat, is a rationally designed human immunodeficiency virus type 1 (HIV-1) fusion inhibitor. This protein can be easily produced by Escherichia coli at a low cost. Previously, studies indicated that HR212 can efficiently inhibit the entry and replication of both laboratory and clinical HIV-1 strains, and this protein is more stable and less sensitive to proteinases than T20. The procedure of HIV-1 entry into the host cells can be divided into three main steps: gp120–CD4 interactions, coreceptor binding, and gp41 six-helix bundle formation and subsequent membrane fusion. The present study demonstrates that HR212 does not block gp120–CD4 binding or interfere with binding to the coreceptors CXCR4 and CCR5. Instead, HR212 efficiently blocks the six-helix bundle formation between peptides derived from the N-terminal heptad repeat (NHR) and the C-terminal heptad repeat (CHR) region of gp41. Fluorescence native polyacrylamide gel electrophoresis (FN-PAGE) indicated that HR212 could form a complex with peptide N36 to block gp41 fusogenic core formation. These results suggest that HR212 inhibits HIV-1 entry by targeting the NHR region of gp41. Therefore, HR212 can potentially be developed as a novel, high-efficiency, specific HIV-1 entry inhibitor.
    Heptad repeat
    Enfuvirtide
    Entry inhibitor
    Helix bundle
    Cell fusion
    Citations (2)
    Enfuvirtide (ENF), the first approved fusion inhibitor (FI) for HIV, is a 36-aa peptide that acts by binding to the heptad repeat 1 (HR1) region of gp41 and preventing the interaction of the HR1 and HR2 domains, which is required for virus–cell fusion. Treatment-acquired resistance to ENF highlights the need to create FI therapeutics with activity against ENF-resistant viruses and improved durability. Using rational design, we have made a series of oligomeric HR2 peptides with increased helical structure and with exceptionally high HR1/HR2 bundle stability. The engineered peptides are found to be as much as 3,600-fold more active than ENF against viruses that are resistant to the HR2 peptides ENF, T-1249, or T-651. Passaging experiments using one of these peptides could not generate virus with decreased sensitivity, even after >70 days in culture, suggesting superior durability as compared with ENF. In addition, the pharmacokinetic properties of the engineered peptides were improved up to 100-fold. The potent antiviral activity against resistant viruses, the difficulty in generating resistant virus, and the extended half-life in vivo make this class of fusion inhibitor peptide attractive for further development.
    Enfuvirtide
    Heptad repeat
    Citations (238)
    During the last decade, a great number of activities have been geared in identifying newer targets for inhibiting HIV infection as well as understanding the targets for already identified anti-HIV-1 agents. The success in converting a proof-of-concept peptide T-20 (previously named DP-178), from the C-terminal heptad repeat (CHR) region of the envelope glycoprotein gp41 of HIV-1, to a drug named enfuvirtide was one of the phenomenal successes in HIV-1 drug discovery research that has been made in recent years. There were many reports of modifying peptides from the N-terminal heptad repeat and CHR regions with the objective of improving their activity. A few laboratories also reported the identification of small-molecule inhibitors that apparently bind to the hydrophobic cavity identified in the gp41 core structure and prevent the CHR peptide binding to the N-terminal heptad repeat peptide, thereby prevent the formation of the typical six-helix bundle, which has been thought to be necessary for the fusion between HIV and cell membranes.
    Heptad repeat
    Enfuvirtide
    Helix bundle
    Peptidomimetic
    Citations (21)
    Enfuvirtide (T20) is a peptide-based fusion inhibitor derived from the heptad repeat 2 (HR2) region of HIV-1 glycoprotein 41 (gp41). The inhibitor binds to the gp41 heptad repeat 1 (HR1) region, thereby blocking viral HR1/HR2 association. Mutations in HR1 have been reported to cause enfuvirtide resistance and reduce viral fitness. In this study, we first showed that scores obtained by a residue-specific all-atom probability discriminatory function (RAPDF) may be used as a reliable predictor of structural stability of gp41 mutants by comparing it to experimentally determined melting temperatures, and as a reliable indicator of enfuvirtide resistance by comparing it to experimentally determined fusion inhibition and viral fitness levels. We then generated an initial set of 28 theoretical structures of the HR1/HR2 hairpin complex where each structure consists of one mutation on HR1 known to cause enfuvirtide resistance and a wild-type amino acid at the corresponding HR2 residue. Mutations were then introduced in the corresponding HR2 residue of each structure where the wild-type amino acid was changed to each of the other nineteen amino acids. The enfuvirtide-resistant HR1 mutants with compensatory mutations at the corresponding HR2 residues had better RAPDF scores than those HR1 mutants with wild-type HR2. This indicates that mutations in HR2 improve structural stability of the HR1/HR2 hairpin complex and may lead to enhanced enfuvirtide resistance when present with resistant HR1 mutations. Modification of the amino acid side chains that contribute to enfuvirtide resistance using the RAPDF scores as a guide may help design of a second generation of fusion inhibitors against the enfuvirtide-resistant strains.
    Enfuvirtide
    Heptad repeat
    Wild type
    Citations (17)