logo
    An Ancient Lectin-Dependent Complement System in an Ascidian: Novel Lectin Isolated from the Plasma of the Solitary Ascidian, Halocynthia roretzi
    129
    Citation
    33
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Abstract Mannose-binding lectin (MBL) is a C-type lectin involved in the first line of host defense against pathogens and it requires MBL-associated serine protease (MASP) for activation of the complement lectin pathway. To elucidate the origin and evolution of MBL, MBL-like lectin was isolated from the plasma of a urochordate, the solitary ascidian Halocynthia roretzi, using affinity chromatography on a yeast mannan-Sepharose. SDS-PAGE of the eluted proteins revealed a major band of ∼36 kDa (p36). p36 cDNA was cloned from an ascidian hepatopancreas cDNA library. Sequence analysis revealed that the carboxy-terminal half of the ascidian lectin contains a carbohydrate recognition domain (CRD) that is homologous to C-type lectin, but it lacks a collagen-like domain that is present in mammalian MBLs. Purified p36 binds specifically to glucose but not to mannose or N-acetylglucosamine, and it was designated glucose-binding lectin (GBL). The two ascidian MASPs associated with GBL activate ascidian C3, which had been reported to act as an opsonin. The removal of GBL-MASPs complex from ascidian plasma using Ab against GBL inhibits C3-dependent phagocytosis. These observations strongly suggest that GBL acts as a recognition molecule and that the primitive complement system, consisting of the lectin-proteases complex and C3, played a major role in innate immunity before the evolution of an adaptive immune system in vertebrates.
    Keywords:
    Lectin pathway
    C-type lectin
    Ficolin
    Collectin
    MASP1
    The complement system is an effector mecha- nism in immunity. It is activated in three ways, the classical, alternative and lectin pathways. The lectin path- way is initiated by the binding of mannose-binding lectin (MBL) or ficolins to carbohydrates on the surfaces of pathogens. In humans, MBL and three types of ficolins (L-ficolin, H-ficolin, and M-ficolin) are present in plasma. Of these lectins, at least, MBL, L-ficolin, and H-ficolin are complexed with three types of MBL-associated serine proteases (MASPs), MASP-1, MASP-2, and MASP-3 and their truncated proteins (MAp44 and sMAP). In the lectin pathway, the lectin-MASP complex (i.e., a complex of lectin, MASPs and their truncated proteins) binds to pathogens, resulting in the activation of C4 and C2 to generate a C3 convertase capable of activating C3. MASP- 2 is involved in the activation of C4 and C2. MASP-1 activates C2 and MASP-2. The functions of MASP-3, sMAP, and MAp44 in the lectin pathway remain unknown. MASP-1 and MASP-3 also have a role in the alternative pathway. MBL and ficolins are able to bind to a variety of pathogens depending on their carbohydrate binding speci- ficity, resulting in the activation of the lectin pathway. Deficiencies of the components of the lectin pathway are associated to susceptibility to infection, indicating an important role of the lectin pathway in innate immunity. The lectin-MASP complex is also involved in innate immunity by activating the coagulation system. Recent findings suggest a crucial role of MASP-3 in development.
    Ficolin
    Lectin pathway
    C-type lectin
    MASP1
    C3-convertase
    CD69
    Complement component 2
    Citations (0)
    The pattern-recognition molecules mannan-binding lectin (MBL) and the three ficolins circulate in blood in complexes with MBL-associated serine proteases (MASPs). When MBL or ficolin recognizes a microorganism, activation of the MASPs occurs leading to activation of the complement system, an important component of the innate immune system. Three proteins are produced from the MASP1 gene: MASP-1 and MASP-3 and MAp44. We present an assay specific for MASP-1, which is based on inhibition of the binding of anti-MASP-1-specific antibody to MASP-1 domains coated onto microtitre wells. MASP-1 was found in serum in large complexes eluting in a position corresponding to ∼600 kDa after gel permeation chromatography in calcium-containing buffer and as monomers of ∼75 kDa in dissociating buffer. The concentration of MASP-1 in donor sera (n = 105) was distributed log-normally with a median value of 11 µg/ml (range 4-30 µg/ml). Serum and citrate plasma levels were similar, while the values in ethylenediamine tetraacetic acid plasma were slightly lower and in heparin plasma were 1·5 times higher than in serum. MASP-1 was present at adult level at 1 year of age, while it was 60% at birth. In normal healthy individuals the level of MASP-1 was stable throughout a 2-month period. After induction of an acute-phase reaction by operation we found an initial short decrease, concomitant with an increase in C-reactive protein levels, followed by an increase, doubling the MASP-1 concentration after 2 days. The present data prepare the ground for studies on the associations of MASP-1 levels with disease.
    MASP1
    Ficolin
    Lectin pathway
    C-type lectin
    Humoral immunity
    CD69
    The complement system is activated cascadically via three distinct major routes: classical pathway (CP), alternative pathway (AP) or lectin pathway (LP). The unique factors associated with the latter are collectins (mannose-binding lectin, collectin-10, collectin-11), ficolins (ficolin-1, ficolin-2, ficolin-3) and proteins of the mannose-binding lectin-associated serine protease (MASP) family (MASP-1, MASP-2, MASP-3, MAp19, MAp44). Collectins and ficolins are both pattern-recognising molecules (PRM), reactive against pathogen-associated molecular patterns (PAMP) or danger-associated molecular patterns (DAMP). The MASP family proteins were first discovered as complexes with mannose-binding lectin (MBL) and therefore named MBL-associated serine proteases, but later, they were found to interact with ficolins, and later still, collectin-10 and collectin-11. As well as proteolytic enzymes (MASP-1, MASP-2, MASP-3), the group includes non-enzymatic factors (MAp19, MAp44). In this review, the association-specific factors of the lectin pathway with haematologic malignancies and related infections are discussed.
    Collectin
    Ficolin
    Lectin pathway
    MASP1
    C-type lectin
    Destabilisation
    Citations (16)
    Abstract The lectin pathway of complement is activated by multimolecular complexes that recognize and bind to microbial polysaccharides. These complexes comprise a multimeric carbohydrate recognition subunit (either mannan-binding lectin (MBL) or a ficolin), three MBL-associated serine proteases (MASP-1, -2, and -3), and MAp19 (a truncated product of the MASP-2 gene). In this study we report the cloning of chicken MASP-2, MASP-3, and MAp19 and the organization of their genes and those for chicken MBL and a novel ficolin. Mammals usually possess two MBL genes and two or three ficolin genes, but chickens have only one of each, both of which represent the undiversified ancestors of the mammalian genes. The primary structure of chicken MASP-2 is 54% identical with those of the human and mouse MASP-2, and the organization of its gene is the same as in mammals. MASP-3 is even more conserved; chicken MASP-3 shares ∼75% of its residues with human and Xenopus MASP-3. It is more widely expressed than other lectin pathway components, suggesting a possible function of MASP-3 different from those of the other components. In mammals, MASP-1 and MASP-3 are alternatively spliced products of a single structural gene. We demonstrate the absence of MASP-1 in birds, possibly caused by the loss of MASP-1-specific exons during phylogeny. Despite the lack of MASP-1-like enzymatic activity in sera of chicken and other birds, avian lectin pathway complexes efficiently activate C4.
    Ficolin
    Lectin pathway
    C-type lectin
    CD69
    MASP1
    Complement component 2
    Citations (56)
    The complement system plays an important role in innate immunity. In the lectin complement pathway, mannose-binding lectin (MBL) and ficolins act as recognition molecules, and MBL-associated serine protease (MASP) is a key enzyme. It has been suggested that MASP-2 is responsible for the activation of C4. Other serine proteases (MASP-1 and MASP-3) are also associated with MBL or ficolins; however, their functions are still controversial. In this study, a MASP-1- and MASP-3-deficient mouse model (MASP1/3(-/-)) was generated by a gene targeting strategy to investigate the roles of MASP-1 and MASP-3 in the lectin pathway. Serum derived from MASP1/3(-/-) mice showed significantly lower activity of both C4 and C3 deposition on mannan-agarose, and this low activity was restored by the addition of recombinant MASP-1. MASP-1/3-deficient serum showed a significant delay for activation of MASP-2 compared with normal serum. Reconstitution of recombinant MASP-1 in MASP-1/3-deficient serum was able to promote the activation of MASP-2. From these results, we propose that MASP-1 contributes to the activation of the lectin pathway, probably through the activation of MASP-2.
    Ficolin
    Lectin pathway
    MASP1
    C-type lectin
    Collectin
    Complement component 2
    Citations (168)
    MBL-associated serine protease(MASP) and mannan-binding lectin(MBL) are key factors of the lectin pathway of complement activation and play an important role in the defense.MBL or ficolin can form complexes with sugars presented on pathogens through its carbohydrate recognition domain(CRD) and its collagen-like region(CLR) can recognize and binding to MASP.MBL can activity the zymogens of MASP which is a key enzyme and activate the complement cascade through lectin pathway.
    MASP1
    Lectin pathway
    Ficolin
    C-type lectin
    Complement control protein
    Complement component 2
    Citations (0)
    Abstract Mannose-binding lectin (MBL) is a C-type lectin involved in the first line of host defense against pathogens and it requires MBL-associated serine protease (MASP) for activation of the complement lectin pathway. To elucidate the origin and evolution of MBL, MBL-like lectin was isolated from the plasma of a urochordate, the solitary ascidian Halocynthia roretzi, using affinity chromatography on a yeast mannan-Sepharose. SDS-PAGE of the eluted proteins revealed a major band of ∼36 kDa (p36). p36 cDNA was cloned from an ascidian hepatopancreas cDNA library. Sequence analysis revealed that the carboxy-terminal half of the ascidian lectin contains a carbohydrate recognition domain (CRD) that is homologous to C-type lectin, but it lacks a collagen-like domain that is present in mammalian MBLs. Purified p36 binds specifically to glucose but not to mannose or N-acetylglucosamine, and it was designated glucose-binding lectin (GBL). The two ascidian MASPs associated with GBL activate ascidian C3, which had been reported to act as an opsonin. The removal of GBL-MASPs complex from ascidian plasma using Ab against GBL inhibits C3-dependent phagocytosis. These observations strongly suggest that GBL acts as a recognition molecule and that the primitive complement system, consisting of the lectin-proteases complex and C3, played a major role in innate immunity before the evolution of an adaptive immune system in vertebrates.
    Lectin pathway
    C-type lectin
    Ficolin
    Collectin
    MASP1
    Citations (129)