logo
    Characterization of Human Influenza Virus Variants Selected In Vitro in the Presence of the Neuraminidase Inhibitor GS 4071
    150
    Citation
    45
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    ABSTRACT An oral prodrug of GS 4071, a potent and selective inhibitor of influenza neuraminidases, is currently under clinical development for the treatment and prophylaxis of influenza virus infections in humans. To investigate the potential development of resistance during the clinical use of this compound, variants of the human influenza A/Victoria/3/75 (H3N2) virus with reduced susceptibility to the neuraminidase inhibitor GS 4071 were selected in vitro by passaging the virus in MDCK cells in the presence of inhibitor. After eight passages, variants containing two amino acid substitutions in the hemagglutinin (A28T in HA1 and R124M in HA2) but no changes in the neuraminidase were isolated. These variants exhibited a 10-fold reduction in susceptibility to GS 4071 and zanamivir (GG167) in an in vitro plaque reduction assay. After 12 passages, a second variant containing these hemagglutinin mutations and a Lys substitution for the conserved Arg292 of the neuraminidase was isolated. The mutant neuraminidase enzyme exhibited high-level (30,000-fold) resistance to GS 4071, but only moderate (30-fold) resistance to zanamivir and 4-amino-Neu5Ac2en, the amino analog of zanamivir. The mutant enzyme had weaker affinity for the fluorogenic substrate 2′-(4-methylumbelliferyl)-α- d - N -acetylneuraminic acid and lower enzymatic activity compared to the wild-type enzyme. The viral variant containing the mutant neuraminidase did not replicate as well as the wild-type virus in culture and was 10,000-fold less infectious than the wild-type virus in a mouse model. These results suggest that although the R292K neuraminidase mutation confers high-level resistance to GS 4071 in vitro, its effect on viral virulence is likely to render this mutation of limited clinical significance.
    Keywords:
    Zanamivir
    Neuraminidase inhibitor
    Influenzavirus B
    Wild type
    A prototype version of a new diagnostic assay for influenza A and B (Zstat Flu™) based on detection of viral neuraminidase was evaluated and compared to culture in 196 clinical samples. Children with respiratory illnesses were prospectively evaluated at a pediatrician's office and at a large children's hospital using the neuraminidase assay and viral culture performed on respiratory secretions. Influenza virus was isolated from 51 samples and 83 were positive by the neuraminidase assay. When compared to culture the sensitivity of the assay was 96%, specificity was 77%, positive predictive value was 59%, and negative predictive value was 98%. Testing in the laboratory of pure cultures of bacteria and non-influenza viruses frequently found in the respiratory tract showed 0% cross-reactivity with the neuraminidase assay and 100% specificity for influenza virus in vitro. This new assay provided useful information for the preliminary diagnosis of influenza A and B infections and appears to be suitable for both point-of-care use in the physician's office and rapid diagnosis in a virology laboratory. The high sensitivity makes it particularly useful as a screening test for exclusion of influenza A and B infections. To confirm the diagnosis and exclude a false-positive result, as well as to determine the influenza virus type, a viral culture may be considered.
    Neuraminidase inhibitor
    Viral culture
    Influenzavirus B
    Citations (32)
    Dimeric derivatives (compounds 7 to 9) of the influenza virus neuraminidase inhibitor zanamivir (compound 2), which have linking groups of 14 to 18 atoms in length, are approximately 100-fold more potent inhibitors of influenza virus replication in vitro and in vivo than zanamivir. The observed optimum linker length of 18 to 22 A, together with observations that the dimers cause aggregation of isolated neuraminidase tetramers and whole virus, indicate that the dimers benefit from multivalent binding via intertetramer and intervirion linkages. The outstanding long-lasting protective activities shown by compounds 8 and 9 in mouse influenza infectivity experiments and the extremely long residence times observed in the lungs of rats suggest that a single low dose of a dimer would provide effective treatment and prophylaxis for influenza virus infections.
    Zanamivir
    Neuraminidase inhibitor
    Infectivity
    Sialidase
    For many years, antiviral treatment of influenza has consisted of monotherapy with a neuraminidase inhibitor. The Food and Drug Administration (FDA) approved the neuraminidase inhibitors oseltamivir (oral administration) and zanamivir (oral inhalation) in 1999 and peramivir (intravenous administration) in late 2014. These drugs work by binding to the viral neuraminidase protein and interfering with the release of influenza virus particles from infected respiratory tract cells. Neuraminidase inhibitors are FDA-approved for the treatment of uncomplicated influenza within 2 days after onset in outpatients, on the basis of randomized, controlled trials, but they are also recommended for the treatment of patients with . . .
    Zanamivir
    Neuraminidase inhibitor
    Oseltamivir
    Citations (11)
    Abstract Objectives The burden of disease due to influenza B is often underestimated. Clinical studies have shown that oseltamivir, a widely used neuraminidase inhibitor (NAI) antiviral drug, may have reduced effectiveness against influenza B viruses. Therefore, it is important to study the effect of neuraminidase mutations in influenza B viruses that may further reduce NAI susceptibility, and to determine whether these mutations have the same effect in the two lineages of influenza B viruses that are currently circulating (B/Yamagata-like and B/Victoria-like). Methods We characterized the effect of 16 amino acid substitutions across five framework residues and four monomeric interface residues on the susceptibility to four different NAIs (oseltamivir, zanamivir, peramivir and laninamivir). Results Framework residue mutations E117A and E117G conferred highly reduced inhibition to three of the four NAIs, but substantially reduced neuraminidase activity, whereas other framework mutations retained a greater level of NA activity. Mutations E105K, P139S and G140R of the monomeric interface were also found to cause highly reduced inhibition, but, interestingly, their effect was substantially greater in a B/Victoria-like neuraminidase than in a B/Yamagata-like neuraminidase, with some susceptibility values being up to 1000-fold different between lineages. Conclusions The frequency and the effect of key neuraminidase mutations on neuraminidase activity and NAI susceptibility can differ substantially between the two influenza B lineages. Therefore, future surveillance, analysis and interpretation of influenza B virus NAI susceptibility should consider the B lineage of the neuraminidase in the same manner as already occurs for different influenza A neuraminidase subtypes.
    Zanamivir
    Oseltamivir
    Neuraminidase inhibitor
    Influenzavirus B
    Citations (34)
    Two hundred and forty-five human influenza A and B viruses isolated in Australia between 1996 and 2003 were tested for their sensitivity to the NA inhibitor drugs, zanamivir and oseltamivir using a fluorescence-based neuraminidase inhibition assay. Based on mean IC50 values, influenza A viruses (with neuraminidase subtypes N1 and N2) were more sensitive to both the NA inhibitors than were influenza B strains. Influenza A viruses with a N1 subtype and influenza B strains both demonstrated a greater sensitivity to zanamivir than to oseltamivir carboxylate, whereas influenza A strains with a N2 subtype were more susceptible to oseltamivir carboxylate. A comparison of IC50 values for viruses isolated before and after the release of the NA inhibitors in Australia, found there was no significant difference in the sensitivity of strains to either neuraminidase inhibitor and none of the isolates tested showed clinically significant resistance.
    Zanamivir
    Oseltamivir
    Neuraminidase inhibitor
    IC50
    Human influenza
    Sialidase
    Citations (12)
    ABSTRACT The H275Y oseltamivir resistance mutation confers high-level resistance to oseltamivir in isolates of human A(H1N1) influenza. We report the recovery and identification of an influenza B virus with the H273Y neuraminidase point mutation directly from a human patient. The H273Y influenza B isolate is resistant to oseltamivir and peramivir but sensitive to zanamivir.
    Oseltamivir
    Zanamivir
    Neuraminidase inhibitor
    Human influenza
    Influenzavirus B
    Resistance mutation
    Citations (23)
    ABSTRACT An oral prodrug of GS 4071, a potent and selective inhibitor of influenza neuraminidases, is currently under clinical development for the treatment and prophylaxis of influenza virus infections in humans. To investigate the potential development of resistance during the clinical use of this compound, variants of the human influenza A/Victoria/3/75 (H3N2) virus with reduced susceptibility to the neuraminidase inhibitor GS 4071 were selected in vitro by passaging the virus in MDCK cells in the presence of inhibitor. After eight passages, variants containing two amino acid substitutions in the hemagglutinin (A28T in HA1 and R124M in HA2) but no changes in the neuraminidase were isolated. These variants exhibited a 10-fold reduction in susceptibility to GS 4071 and zanamivir (GG167) in an in vitro plaque reduction assay. After 12 passages, a second variant containing these hemagglutinin mutations and a Lys substitution for the conserved Arg292 of the neuraminidase was isolated. The mutant neuraminidase enzyme exhibited high-level (30,000-fold) resistance to GS 4071, but only moderate (30-fold) resistance to zanamivir and 4-amino-Neu5Ac2en, the amino analog of zanamivir. The mutant enzyme had weaker affinity for the fluorogenic substrate 2′-(4-methylumbelliferyl)-α- d - N -acetylneuraminic acid and lower enzymatic activity compared to the wild-type enzyme. The viral variant containing the mutant neuraminidase did not replicate as well as the wild-type virus in culture and was 10,000-fold less infectious than the wild-type virus in a mouse model. These results suggest that although the R292K neuraminidase mutation confers high-level resistance to GS 4071 in vitro, its effect on viral virulence is likely to render this mutation of limited clinical significance.
    Zanamivir
    Neuraminidase inhibitor
    Influenzavirus B
    Wild type
    Citations (150)
    Influenza A and B viruses cause significant morbidity and mortality worldwide each year. The neuraminidase inhibitors (NAIs) are the most commonly used class of influenza antiviral drugs for the treatment of infected patients. In vitro studies have shown that influenza B viruses are significantly less susceptible to oseltamivir and other neuraminidase inhibitors compared with influenza A viruses. Following analysis of published clinical studies, we show that oseltamivir does appear to have lower effectiveness in patients infected with influenza B virus compared with influenza A infected patients, but due to insufficient studies on zanamivir, laninamivir or peramivir, it was not possible to conclude the relative effectiveness of these drugs against influenza A virus compared with B virus.
    Zanamivir
    Oseltamivir
    Neuraminidase inhibitor
    Influenzavirus B