logo
    Mitochondrial DNA variability in Poles and Russians.
    124
    Citation
    48
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Mitochondrial DNA (mtDNA) sequence variation was examined in Poles (from the Pomerania-Kujawy region; n = 436) and Russians (from three different regions of the European part of Russia; n = 201), for which the two hypervariable segments (HVS I and HVS II) and haplogroup-specific coding region sites were analyzed. The use of mtDNA coding region RFLP analysis made it possible to distinguish parallel mutations that occurred at particular sites in the HVS I and II regions during mtDNA evolution. In total, parallel mutations were identified at 73 nucleotide sites in HVS I (17.8%) and 31 sites in HVS II (7.73%). The classification of mitochondrial haplotypes revealed the presence of all major European haplogroups, which were characterized by similar patterns of distribution in Poles and Russians. An analysis of the distribution of the control region haplotypes did not reveal any specific combinations of unique mtDNA haplotypes and their subclusters that clearly distinguish both Poles and Russians from the neighbouring European populations. The only exception is a novel subcluster U4a within subhaplogroup U4, defined by a diagnostic mutation at nucleotide position 310 in HVS II. This subcluster was found in common predominantly between Poles and Russians (at a frequency of 2.3% and 2.0%, respectively) and may therefore have a central-eastern European origin.
    Keywords:
    Haplogroup
    Hypervariable region
    mtDNA control region
    Coding region
    Human mitochondrial genetics
    mtDNA control region
    Hypervariable region
    D-loop
    Nucleotide diversity
    Human mitochondrial genetics
    Lineage (genetic)
    Sequence (biology)
    Haplogroup
    Heteroplasmy
    Citations (186)
    Background: The Aché Natives are an especially interesting group of people, due to their distinctive morphological aspect and the fact that only in the last three decades have they established more permanent contact with outside populations. The objectives of the present study were: (a) to verify their distinctiveness in relation to mitochondrial DNA (mtDNA) variability; (b) to ascertain whether the pattern observed was congruent with other genetic studies performed among them; and (c) to establish historical inferences that would explain the eventual similarities or differences.Subjects and methods: Sample collection was made at two localities in eastern Paraguay. DNA from 64 maternally unrelated subjects were tested in relation to the mtDNA hypervariable segment 1 (HVS-1) by automatic sequencing.Results: Fifty-six individuals presented exactly the same haplogroup B founder haplotype; another differed from it by a single transition polymorphism at site 16362, while six other subjects showed an identical haplogroup A founding haplotype. An A/G heteroplasmy at the 16269 site was seen in one haplogroup B individual, probably due to a somatic mutation.Conclusions: The Aché present distinctive differences and reduced mtDNA HVS-1 variability compared to other South American Natives. Similar differences were observed for other genetic systems. At present it is not clear whether their peculiarities already existed in their founding populations or whether they were secondarily acquired due to a long period of isolation in the humid, subtropical forest.
    Mitochondrial DNA (mtDNA) sequence variation was examined in Poles (from the Pomerania-Kujawy region; n = 436) and Russians (from three different regions of the European part of Russia; n = 201), for which the two hypervariable segments (HVS I and HVS II) and haplogroup-specific coding region sites were analyzed. The use of mtDNA coding region RFLP analysis made it possible to distinguish parallel mutations that occurred at particular sites in the HVS I and II regions during mtDNA evolution. In total, parallel mutations were identified at 73 nucleotide sites in HVS I (17.8%) and 31 sites in HVS II (7.73%). The classification of mitochondrial haplotypes revealed the presence of all major European haplogroups, which were characterized by similar patterns of distribution in Poles and Russians. An analysis of the distribution of the control region haplotypes did not reveal any specific combinations of unique mtDNA haplotypes and their subclusters that clearly distinguish both Poles and Russians from the neighbouring European populations. The only exception is a novel subcluster U4a within subhaplogroup U4, defined by a diagnostic mutation at nucleotide position 310 in HVS II. This subcluster was found in common predominantly between Poles and Russians (at a frequency of 2.3% and 2.0%, respectively) and may therefore have a central-eastern European origin.
    Haplogroup
    Hypervariable region
    mtDNA control region
    Coding region
    Human mitochondrial genetics
    Citations (124)
    Mitochondrial DNA (mtDNA) sequence variation was examined in Finns, Swedes and Tuscans by PCR amplification and restriction analysis. About 99% of the mtDNAs were subsumed within 10 mtDNA haplogroups (H, I, J, K, M, T, U, V, W, and X) suggesting that the identified haplogroups could encompass virtually all European mtDNAs. Because both hypervariable segments of the mtDNA control region were previously sequenced in the Tuscan samples, the mtDNA haplogroups and control region sequences could be compared. Using a combination of haplogroup-specific restriction site changes and control region nucleotide substitutions, the distribution of the haplogroups was surveyed through the published restriction site polymorphism and control region sequence data of Caucasoids. This supported the conclusion that most haplogroups observed in Europe are Caucasoid-specific, and that at least some of them occur at varying frequencies in different Caucasoid populations. The classification of almost all European mtDNA variation in a number of well defined haplogroups could provide additional insights about the origin and relationships of Caucasoid populations and the process of human colonization of Europe, and is valuable for the definition of the role played by mtDNA backgrounds in the expression of pathological mtDNA mutations
    Haplogroup
    Hypervariable region
    Subclade
    mtDNA control region
    Human mitochondrial genetics
    Sequence (biology)
    Citations (855)
    Summary Mitochondrial DNA variability in the Polish Roma population has been studied by means of hypervariable segment I and II (HVS I and II) sequencing and restriction fragment‐length polymorphism analysis of the mtDNA coding region. The mtDNA haplotypes detected in the Polish Roma fall into the common Eurasian mitochondrial haplogroups (H, U3, K, J1, X, I, W, and M*). The results of complete mtDNA sequencing clearly indicate that the Romani M*‐lineage belongs to the Indian‐specific haplogroup M5, which is characterized by three transitions in the coding region, at sites 12477, 3921 and 709. Molecular variance analysis inferred from mtDNA data reveals that genetic distances between the Roma groups are considerably larger than those between the surrounding European populations. Also, there are significant differences between the Bulgarian Roma (Balkan and Vlax groups) and West European Roma (Polish, Lithuanian and Spanish groups). Comparative analysis of mtDNA haplotypes in the Roma populations shows that different haplotypes appear to demonstrate impressive founder effects: M5 and H (16261–16304) in all Romani groups; U3, I and J1 in some Romani groups. Interestingly, haplogroup K (with HVS I motif 16224‐16234‐16311) found in the Polish Roma sample seems to be specific for Ashkenazi Jewish populations.
    Haplogroup
    Hypervariable region
    Subclade
    Human mitochondrial genetics
    Coding region
    Founder effect
    The human mitochondrial genome (mtDNA) has been an important tool in the field of forensic investigations. Within the entire mtDNA molecule, the non-coding control region which is approximately 1,100 bp including hypervariable region I and II (HV1 and HV2) is widely studied because it is highly polymorphic and useful for human identification purposes. In this study, 360 unrelated Koreans were analyzed in HV1. The number of polymorphic sites and genetic lineage were 124 and 210, respectively. The most prevalent substitution was C-T and 75.8% of DNA showed C-T substitution at 16223. There were 20 kinds of polymorphism between 16180 and 16193 including insertion and deletion. The most frequent haplotype was [16223T, 16362C] representing 5%. Approximately 25.9% of DNA showed the same haplotype in at least two samples. The gene diversity was calculated to 0.996 and the probability of two unrelated perosons having the same haplotype was determined to 0.7%.
    Hypervariable region
    mtDNA control region
    Coding region
    Human mitochondrial genetics
    Citations (0)
    Abstract Background Profiling of mitochondrial DNA is surely to provide valuable investigative clues for forensic cases involving highly degraded specimens or complex maternal lineage kinship determination. But traditionally used hypervariable region sequencing of mitochondrial DNA is less frequently suggested by the forensic community for insufficient informativeness. Genome‐wide sequencing of mitochondrial DNA can provide considerable amount of variant information but can be high cost at the same time. Methods Efficiency of the 60 mitochondrial DNA polymorphic sites dispersing across the control region and coding region of mitochondrial DNA genome was evaluated with 106 Mongolians recruited from the Xinjiang Uyghur Autonomous Region, China, and allele‐specific PCR technique was employed for mitochondrial DNA typing. Results Altogether 58 haplotypes were observed and the haplotypic diversity, discrimination power and random match probability were calculated to be 0.981, 0.972, and 0.028, respectively. Mitochondrial DNA haplogroup affiliation exhibited an exceeding percentage (12.26%) of west Eurasian lineage (H haplogroup) in the studied Mongolian group, which needed to be further verified with more samples. Furthermore, the genetic relationships between the Xinjiang Mongolian group and the comparison populations were also investigated and the genetic affinity was discovered between the Xinjiang Mongolian group and the Xinjiang Kazak group in this study. Conclusion It was indicated that the panel was potentially enough to be used as a supplementary tool for forensic applications. And the matrilineal genetic structure analyses based on mitochondrial DNA variants in the Xinjiang Mongolian group could be helpful for subsequent anthropological studies.
    Citations (21)