logo
    PITX2, β-catenin and LEF-1 interact to synergistically regulate theLEF-1promoter
    109
    Citation
    34
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    PITX2, β-catenin and lymphoid enhancer factor (LEF-1) are required for the inductive formation of several epithelial-derived organs, including teeth. Lef-1 is expressed in the dental epithelium after Pitx2, and both factors have overlapping expression patterns in the tooth bud and cap stages. Our analysis of Pitx2–/– mutant mice showed reduced Lef-1 expression in facial tissues by RT-PCR and quantitative RT-PCR. Consistent with these results we show that the human 2.5 kb LEF-1 promoter is activated by PITX2. Furthermore, the LEF-1 promoter is differentially activated by PITX2 isoforms, which are co-expressed in dental epithelium. The 2.5 kb LEF-1 promoter contains two regions that act to inhibit its transcription in concert with PITX2. The proximal region contains a Wnt-responsive element (WRE) that attenuates PITX2 activation. LEF-1 cannot autoregulate LEF-1 expression; however co-transfection of PITX2 and LEF-1 result in a synergistic activation of the 2.5 kb LEF-1 promoter. LEF-1 specifically interacts with the PITX2 C-terminal tail. Deletion of a distal 800 bp segment of the LEF-1 promoter resulted in enhanced PITX2 activation, and increased synergistic activation in the presence of LEF-1. Furthermore, β-catenin in combination with PITX2 synergistically activates the LEF-1 promoter and this activation is independent of the Wnt-responsive element. β-catenin directly interacts with PITX2 to synergistically regulate LEF-1 expression. We show a new mechanism where LEF-1 expression is regulated through PITX2, LEF-1 and β-catenin direct physical interactions. LEF-1 and β-catenin interactions with PITX2 provide new mechanisms for the regulation of PITX2 transcriptional activity.
    Keywords:
    PITX2
    Abstract Gene regulation in the human genome is controlled by distal enhancers that activate specific nearby promoters. One model for the specificity of enhancer-promoter regulation is that different promoters might have sequence-encoded preferences for distinct classes of enhancers, for example mediated by interacting sets of transcription factors or cofactors. This “biochemical compatibility” model has been supported by observations at individual human promoters and by genome-wide measurements in Drosophila . However, the degree to which human enhancers and promoters are intrinsically compatible or specific has not been systematically measured, and how their activities combine to control RNA expression remains unclear. To address these questions, we designed a high-throughput reporter assay called enhancer x promoter (ExP) STARR-seq and applied it to examine the combinatorial compatibilities of 1,000 enhancer and 1,000 promoter sequences in human K562 cells. We identify a simple logic for enhancer-promoter compatibility – virtually all enhancers activated all promoters by similar amounts, and intrinsic enhancer and promoter activities combine multiplicatively to determine RNA output ( R 2 =0.82). In addition, two classes of enhancers and promoters showed subtle preferential effects. Promoters of housekeeping genes contained built-in activating sequences, corresponding to motifs for factors such as GABPA and YY1, that correlated with both stronger autonomous promoter activity and enhancer activity, and weaker responsiveness to distal enhancers. Promoters of context-specific genes lacked these motifs and showed stronger responsiveness to enhancers. Together, this systematic assessment of enhancer-promoter compatibility suggests a multiplicative model tuned by enhancer and promoter class to control gene transcription in the human genome.
    Enhancer RNAs
    Enhancer trap
    Transcription
    Citations (3)
    ABSTRACT Enhancers and promoters are cis -regulatory elements that control gene expression. Enhancers are activated in a cell type-, tissue-, and condition-specific manner to stimulate promoter function and transcription. Zebrafish have emerged as a powerful animal model for examining the activities of enhancers derived from various species through transgenic enhancer assays, in which an enhancer is coupled with a minimal promoter. However, the efficiency of minimal promoters and their compatibility with multiple developmental and regeneration enhancers have not been systematically tested in zebrafish. Thus, we assessed the efficiency of six minimal promoters and comprehensively interrogated the compatibility of the promoters with developmental and regeneration enhancers. We found that the fos minimal promoter and Drosophila synthetic core promoter (DSCP) yielded high rates of leaky expression that may complicate the interpretation of enhancer assays. Notably, the adenovirus E1b promoter, the zebrafish lepb 0.8-kb ( P0.8 ) and lepb 2-kb ( P2 ) promoters, and a new zebrafish synthetic promoter ( ZSP ) that combines elements of the E1b and P0.8 promoters drove little or no ectopic expression, making them suitable for transgenic assays. We also found significant differences in compatibility among specific combinations of promoters and enhancers, indicating the importance of promoters as key regulatory elements determining the specificity of gene expression. Our study provides guidelines for transgenic enhancer assays in zebrafish to aid in the discovery of functional enhancers regulating development and regeneration.
    Enhancer RNAs
    Citations (0)
    Abstract Enhancers and promoters both regulate gene expression by recruiting transcription factors (TFs); however, the degree to which enhancer vs. promoter activity is due to differences in their sequences or to genomic context is the subject of ongoing debate. We examined this question by analyzing the sequences of thousands of transcribed enhancers and promoters from hundreds of cellular contexts previously identified by cap analysis of gene expression. Support vector machine classifiers trained on counts of all possible 6-bp-long sequences (6-mers) were able to accurately distinguish promoters from enhancers and distinguish their breadth of activity across tissues. Classifiers trained to predict enhancer activity also performed well when applied to promoter prediction tasks, but promoter-trained classifiers performed poorly on enhancers. This suggests that the learned sequence patterns predictive of enhancer activity generalize to promoters, but not vice versa. Our classifiers also indicate that there are functionally relevant differences in enhancer and promoter GC content beyond the influence of CpG islands. Furthermore, sequences characteristic of broad promoter or broad enhancer activity matched different TFs, with predicted ETS- and RFX-binding sites indicative of promoters, and AP-1 sites indicative of enhancers. Finally, we evaluated the ability of our models to distinguish enhancers and promoters defined by histone modifications. Separating these classes was substantially more difficult, and this difference may contribute to ongoing debates about the similarity of enhancers and promoters. In summary, our results suggest that high-confidence transcribed enhancers and promoters can largely be distinguished based on biologically relevant sequence properties.
    Transcription
    Enhancer RNAs
    Citations (12)
    ABSTRACT In Metazoans, transcription of most genes is driven through the use of multiple alternative promoters. Although the precise spatio-temporal regulation of alternative promoters is important for proper gene expression, the mechanism that mediates their differential utilization remains unclear. Here, we investigate how the two alternative promoters (P1, P2) that drive MYC expression are regulated. We find that P1 and P2 can be differentially regulated across cell-types, and that their selective usage is largely mediated by distal regulatory sequences. Moreover, we show that in the colon carcinoma cell line HCT-116, Wnt-responsive enhancers preferentially upregulate transcription from the P1 promoter using both transgenic reporter assays and in the context of the endogenous Myc locus upon Wnt induction. In addition, multiple enhancer deletions using CRISPR/Cas9 corroborate the regulatory specificity of P1. Finally, we show that preferential activation between Wnt-responsive enhancers and the P1 promoter is influenced by distinct core promoter elements present in the two MYC promoters. Taken together, our results provide new insights into how enhancers can specifically target alternative promoters and suggest that formation of these selective interactions could allow more diverse combinatorial regulation of transcription initiation.
    Transcription
    Citations (0)
    In Metazoans, transcription of most genes is driven by the use of multiple alternative promoters. Although the precise regulation of alternative promoters is important for proper gene expression, the mechanisms that mediates their differential utilization remains unclear. Here, we investigate how the two alternative promoters (P1, P2) that drive MYC expression are regulated. We find that P1 and P2 can be differentially regulated across cell-types and that their selective usage is largely mediated by distal regulatory sequences. Moreover, we show that in colon carcinoma cells, Wnt-responsive enhancers preferentially upregulate transcription from the P1 promoter using reporter assays and in the context of the endogenous Wnt induction. In addition, multiple enhancer deletions using CRISPR/Cas9 corroborate the regulatory specificity of P1. Finally, we show that preferential activation between Wnt-responsive enhancers and the P1 promoter is influenced by the distinct core promoter elements that are present in the MYC promoters. Taken together, our results provide new insight into how enhancers can specifically target alternative promoters and suggest that formation of these selective interactions could allow more precise combinatorial regulation of transcription initiation.
    Transcription
    Enhancer RNAs
    Citations (2)
    An essential questions of gene regulation is how large number of enhancers and promoters organize into gene regulatory loops. Using transcription-factor binding enrichment as an indicator of enhancer strength, we identified a portion of H3K27ac peaks as potentially strong enhancers and found a universal pattern of promoter and enhancer distribution: At actively transcribed regions of length of ∼200-300 kb, the numbers of active promoters and enhancers are inversely related. Enhancer clusters are associated with isolated active promoters, regardless of the gene's cell-type specificity. As the number of nearby active promoters increases, the number of enhancers decreases. At regions where multiple active genes are closely located, there are few distant enhancers. With Hi-C analysis, we demonstrate that the interactions among the regulatory elements (active promoters and enhancers) occur predominantly in clusters and multiway among linearly close elements and the distance between adjacent elements shows a preference of ∼30 kb. We propose a simple rule of spatial organization of active promoters and enhancers: Gene transcriptions and regulations mainly occur at local active transcription hubs contributed dynamically by multiple elements from linearly close enhancers and/or active promoters. The hub model can be represented with a flower-shaped structure and implies an enhancer-like role of active promoters.
    Enhancer RNAs
    Transcription
    Citations (44)