logo
    A Flucytosine-Responsive Mbp1/Swi4-Like Protein, Mbs1, Plays Pleiotropic Roles in Antifungal Drug Resistance, Stress Response, and Virulence of Cryptococcus neoformans
    47
    Citation
    60
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    ABSTRACT Cryptococcosis, caused by the basidiomycetous fungus Cryptococcus neoformans , is responsible for more than 600,000 deaths annually in AIDS patients. Flucytosine is one of the most commonly used antifungal drugs for its treatment, but its resistance and regulatory mechanisms have never been investigated at the genome scale in C. neoformans . In the present study, we performed comparative transcriptome analysis by employing two-component system mutants ( tco1 Δ and tco2 Δ) exhibiting opposing flucytosine susceptibility. As a result, a total of 177 flucytosine-responsive genes were identified, and many of them were found to be regulated by Tco1 or Tco2. Among these, we discovered an APSES-like transcription factor, Mbs1 ( Mb p1- and S wi4-like protein 1). Expression analysis revealed that MBS1 was regulated in response to flucytosine in a Tco2/Hog1-dependent manner. Supporting this, C. neoformans with the deletion of MBS1 exhibited increased susceptibility to flucytosine. Intriguingly, Mbs1 played pleiotropic roles in diverse cellular processes of C. neoformans . Mbs1 positively regulated ergosterol biosynthesis and thereby affected polyene and azole drug susceptibility. Mbs1 was also involved in genotoxic and oxidative stress responses. Furthermore, Mbs1 promoted production of melanin and capsule and thereby was required for full virulence of C. neoformans . In conclusion, Mbs1 is considered to be a novel antifungal therapeutic target for treatment of cryptococcosis.
    Keywords:
    Flucytosine
    Antifungal drugs
    Ergosterol
    Fungal protein
    Virulence factor
    Pathogenic fungus
    Materials with fungi-bioinspired surface have been designed to host ergosterol-binding polyene antibiotics and to release them via a competitive mechanism only when fungi are present in the medium. Silicone rubber (SR) surfaces were endowed with selective loading and fungi-triggered release of polyene antifungal agents by means of a two-step functionalization that involved the grafting of glycidyl methacrylate (GMA) via a γ-ray preirradiation method (9–21.3% wt grafting) and the subsequent immobilization of ergosterol (3.9–116.8 mg/g) to the epoxy groups of polyGMA. The functionalized materials were characterized using FTIR and Raman spectroscopy, thermogravimetric analysis (TGA), and fluorescence, scanning electron microscopy (SEM), and atomic force microscopy (AFM) image analyses. Specific interactions between natamycin or nystatin and ergosterol endowed SR with ability to take up these polyene drugs, while immobilization of ergosterol did not modify the loading of antifungal drugs that did not interact in vivo with ergosterol (e.g., miconazole). In a buffer medium, polyene-loaded ergosterol-immobilized slabs efficiently retained the drug (<10% released at day 14), while in the presence of ergosterol-containing liposomes that mimic fungi membranes the release rate was 10-to-15-fold enhanced due to a competitive displacement of the drug from the ergosterol-immobilized slab to the ergosterol-containing liposomes. Release in the presence of cholesterol liposomes was slower due to a weaker interaction with polyene agents. The fungi-responsive release was demonstrated for both polyene drugs tested and for slabs prepared with a wide range of amounts of immobilized GMA and ergosterol, demonstrating the robustness of the approach. Nystatin-loaded functionalized slabs were challenged with Candida albicans and showed improved capability to inhibit biofilm formation compared to nystatin-soaked pristine SR, confirming the performance of the bioinspired materials.
    Citations (23)
    Ergosterol, the major sterol of fungal membranes, is essential for developmental growth and the main target of antifungals that are currently used to treat fatal fungal infections. Emergence of resistance to existing antifungals is a current problem and several secondary resistance mechanisms have been described in Aspergillus fumigatus clinical isolates. A full understanding of ergosterol biosynthetic control therefore appears to be essential for improvement of antifungal efficacy and to prevent antifungal resistance. An ergosterol biosynthesis pathway in A. fumigatus has been proposed with 14 sterol intermediates resulting in ergosterol and another secondary final compound C-24 ethyl sterol. Transcriptomic analysis of the A. fumigatus response to host-imposed stresses or antifungal agents is expanding our understanding of both sterol biosynthesis and the modes of action of antifungal drugs. Ultimately, the identification of new targets for novel drug design, or the study of combinatorial effects of targeting sterol biosynthesis together with other metabolic pathways, is warranted.
    Ergosterol
    Antifungal drugs
    Citations (166)
    During antifungal drug treatment and hypoxia, genetic and epigenetic changes occur to maintain sterol homeostasis and cellular function. In this study, we show that SET domain-containing epigenetic factors govern drug efficacy to the medically relevant azole class of antifungal drugs. Upon this discovery, we determined that Set4 is induced when Saccharomyces cerevisiae are treated with azole drugs or grown under hypoxic conditions; two conditions that deplete cellular ergosterol and increase sterol precursors. Interestingly, Set4 induction is controlled by the sterol-sensing transcription factors, Upc2 and Ecm22 To determine the role of Set4 on gene expression under hypoxic conditions, we performed RNA-sequencing analysis and showed that Set4 is required for global changes in gene expression. Specifically, loss of Set4 led to an upregulation of nearly all ergosterol genes, including ERG11 and ERG3, suggesting that Set4 functions in gene repression. Furthermore, mass spectrometry analysis revealed that Set4 interacts with the hypoxic-specific transcriptional repressor, Hap1, where this interaction is necessary for Set4 recruitment to ergosterol gene promoters under hypoxia. Finally, an erg3Δ strain, which produces precursor sterols but lacks ergosterol, expresses Set4 under untreated aerobic conditions. Together, our data suggest that sterol precursors are needed for Set4 induction through an Upc2-mediated mechanism. Overall, this new sterol-signaling pathway governs azole antifungal drug resistance and mediates repression of sterol genes under hypoxic conditions.
    Azole
    Antifungal drugs
    Citations (34)
    The high morbidity and mortality of cryptococcal meningitis is due to the limited range of therapeutic options: only three classes of antifungal drugs are available (polyenes [amphotericin B], azoles [fluconazole], and pyrimidine analogues [flucytosine]). Fluconazole is the most widely used antifungal drug in sub-Saharan Africa, where cryptococcal meningitis is a major cause of death in patients infected with HIV. In this study, we found that exposure to fluconazole, even for short times (48 h) at subinhibitory concentrations, drove rapid adaptation of Cryptococcus neoformans serotype A strain H99 via the acquisition of different aneuploid chromosomes. These aneuploidies conferred heteroresistance to fluconazole. Importantly, most of the adaptors were cross-tolerant to flucytosine. Some of the aneuploid adaptors were not heteroresistant to fluconazole but were tolerant to amphotericin B. Thus, exposure to one antifungal drug class can promote adaptation to two antifungal drug classes, highlighting the plasticity of the C. neoformans genome and raising concerns about the rapid reduction in the range of treatment options for cryptococcal infections. IMPORTANCE Cryptococcosis is a globally distributed invasive fungal infection caused by infections with Cryptococcus neoformans or Cryptococcus gattii. Only three classes of therapeutic drugs are clinically available for treating cryptococcosis: polyenes (amphotericin B), azoles (fluconazole), and pyrimidine analogues (flucytosine). Fluconazole is the primary drug available in resource-limited countries. Aneuploidy is a genomic state due to the gain or loss of chromosomes. We found that C. neoformans rapidly adapted to fluconazole by acquiring diverse aneuploidies and that specific aneuploidies enabled improved growth of isolates susceptible (tolerance) to amphotericin B and/or cross-tolerance to both fluconazole and flucytosine. Therefore, aneuploidy is an underlying mechanism of drug tolerance that not only arises rapidly during growth in fluconazole but can also confer tolerance to other antifungal drugs without prior exposure to those drugs. Resistant isolates have high MICs, and all cells grow similarly in medium with the drug, while tolerant isolates test as susceptible and grow slowly at drug concentrations above the MIC.
    Flucytosine
    Antifungal drugs
    Cryptococcus gattii
    Citations (31)
    ABSTRACT Cryptococcosis, caused by the basidiomycetous fungus Cryptococcus neoformans , is responsible for more than 600,000 deaths annually in AIDS patients. Flucytosine is one of the most commonly used antifungal drugs for its treatment, but its resistance and regulatory mechanisms have never been investigated at the genome scale in C. neoformans . In the present study, we performed comparative transcriptome analysis by employing two-component system mutants ( tco1 Δ and tco2 Δ) exhibiting opposing flucytosine susceptibility. As a result, a total of 177 flucytosine-responsive genes were identified, and many of them were found to be regulated by Tco1 or Tco2. Among these, we discovered an APSES-like transcription factor, Mbs1 ( Mb p1- and S wi4-like protein 1). Expression analysis revealed that MBS1 was regulated in response to flucytosine in a Tco2/Hog1-dependent manner. Supporting this, C. neoformans with the deletion of MBS1 exhibited increased susceptibility to flucytosine. Intriguingly, Mbs1 played pleiotropic roles in diverse cellular processes of C. neoformans . Mbs1 positively regulated ergosterol biosynthesis and thereby affected polyene and azole drug susceptibility. Mbs1 was also involved in genotoxic and oxidative stress responses. Furthermore, Mbs1 promoted production of melanin and capsule and thereby was required for full virulence of C. neoformans . In conclusion, Mbs1 is considered to be a novel antifungal therapeutic target for treatment of cryptococcosis.
    Flucytosine
    Antifungal drugs
    Ergosterol
    Fungal protein
    Virulence factor
    Pathogenic fungus
    Citations (47)
    Abstract Although invasive fungal infections lead to significant morbidity and mortality, there remain limited numbers of antifungal drugs available to treat these infections. This chapter describes and discusses the therapeutic antifungal agent classes currently available clinically to treat invasive fungal infections. These include the polyenes, azoles, echinocandins, and flucytosine (5-fluorocytosine). For each drug class, those currently used clinically are listed and their modes of action described. The effectiveness of drugs against different fungal species is explored and any drawbacks to the use of each drug are discussed. Drug formulations and indications for the use of each antifungal agent are also detailed.
    Flucytosine
    Echinocandins
    Antifungal drugs
    Antifungal drugs
    Invasive candidiasis