Murine pregnancy leads to reduced proliferation of maternal thymocytes and decreased thymic emigration
91
Citation
34
Reference
10
Related Paper
Citation Trend
Abstract:
Summary During mammalian pregnancy the maternal thymus undergoes significant involution, and then recovers in size after birth. The mechanism behind this involution is not known, but it has been suggested that elevated levels of hormones during pregnancy induce the involution. We have recently shown that injection of 17β‐oestradiol into mice causes loss of early thymocyte precursors and inhibits proliferation of developing thymocytes. This suggests that elevated oestrogen in pregnancy may contribute to thymic involution. We have investigated this idea by examining the fate of thymocytes during mouse pregnancy in much greater detail than has been previously reported. Looking over a broad time–course, we find that pregnancy does not affect thymocyte precursor populations in the bone marrow, but induces a profound loss of early thymic progenitors in the thymus as early as day 12·5 of pregnancy. This loss is accompanied by decreased thymocyte proliferation, which returns to normal 2–4 days postpartum. No enhancement of apoptosis is detectable at any stage of pregnancy. We also find that there is a reduction in recent thymic emigrants after oestrogen treatment and at day 17·5 of pregnancy, suggesting that thymic involution during pregnancy influences the peripheral T‐cell repertoire. The similarities between oestrogen‐mediated involution and pregnancy‐mediated involution suggest that oestrogen is a significant contributor to loss of thymocyte cellularity during pregnancy, and probably functions primarily by reducing thymocyte proliferation.Keywords:
Involution (esoterism)
Thymocyte
Thymic involution
Summary During mammalian pregnancy the maternal thymus undergoes significant involution, and then recovers in size after birth. The mechanism behind this involution is not known, but it has been suggested that elevated levels of hormones during pregnancy induce the involution. We have recently shown that injection of 17β‐oestradiol into mice causes loss of early thymocyte precursors and inhibits proliferation of developing thymocytes. This suggests that elevated oestrogen in pregnancy may contribute to thymic involution. We have investigated this idea by examining the fate of thymocytes during mouse pregnancy in much greater detail than has been previously reported. Looking over a broad time–course, we find that pregnancy does not affect thymocyte precursor populations in the bone marrow, but induces a profound loss of early thymic progenitors in the thymus as early as day 12·5 of pregnancy. This loss is accompanied by decreased thymocyte proliferation, which returns to normal 2–4 days postpartum. No enhancement of apoptosis is detectable at any stage of pregnancy. We also find that there is a reduction in recent thymic emigrants after oestrogen treatment and at day 17·5 of pregnancy, suggesting that thymic involution during pregnancy influences the peripheral T‐cell repertoire. The similarities between oestrogen‐mediated involution and pregnancy‐mediated involution suggest that oestrogen is a significant contributor to loss of thymocyte cellularity during pregnancy, and probably functions primarily by reducing thymocyte proliferation.
Involution (esoterism)
Thymocyte
Thymic involution
Cite
Citations (91)
Involution (esoterism)
Thymic involution
Homeostasis
Cite
Citations (0)
The human thymus is a primary lymphoepithelial organ which supports the production of self-tolerant T cells with competent and regulatory functions. Paradoxically, despite the crucial role that it exerts in T cell-mediated immunity and prevention of systemic autoimmunity, the thymus is the first organ of the body that exhibits age-associated degeneration/regression, termed “thymic involution.” A hallmark of this early phenomenon is a progressive decline of thymic mass as well as a decreased output of naïve T cells, thus resulting in impaired immune response. Importantly, thymic involution has been recently linked with cellular senescence which is a stress response induced by various stimuli. Accumulation of senescent cells in tissues has been implicated in aging and a plethora of age-related diseases. In addition, several lines of evidence indicate that oxidative stress, a well-established trigger of senescence, is also involved in thymic involution, thus highlighting a possible interplay between oxidative stress, senescence, and thymic involution.
Involution (esoterism)
Thymic involution
Senescence
Cite
Citations (59)
Thymic involution
Involution (esoterism)
Senescence
Cite
Citations (15)
Thymic involution
Involution (esoterism)
Cite
Citations (468)
Age-related regression of the thymus is associated with a decline in naïve T cell output which is thought to contribute to the reduction in T cell diversity in older individuals that is partially responsible for an increase in susceptibility and severity of infections, cancers and autoimmune diseases. Thymic involution is one of the most dramatic and ubiquitous changes in the ageing immune system, but the precise regulators remain anonymous. However, a picture is emerging, implicating extrinsic and intrinsic factors that may contribute towards age-associated thymic involution. In this review we assess the role of the thymic microenvironment as a possible target of thymic involution, question whether thymocyte development in the aged thymus is functional and explore why the thymus involutes.
Thymic involution
Involution (esoterism)
Thymocyte
Cite
Citations (56)
Thymic involution is an important factor leading to the aging of the immune system. Most of what we know regarding thymic aging comes from mouse models, and the nature of the thymic aging process in humans remains largely unexplored due to the lack of a model system that permits longitudinal studies of human thymic involution. In this study, we sought to explore the potential to examine human thymic involution in humanized mice, constructed by transplantation of fetal human thymus and CD34+ hematopoietic stem/progenitor cells into immunodeficient mice. In these humanized mice, the human thymic graft first underwent acute recoverable involution caused presumably by transplantation stress, followed by an age-related chronic form of involution. Although both the early recoverable and later age-related thymic involution were associated with a decrease in thymic epithelial cells and recent thymic emigrants, only the latter was associated with an increase in adipose tissue mass in the thymus. Furthermore, human thymic grafts showed a dramatic reduction in FOXN1 and AIRE expression by 10 weeks post-transplantation. This study indicates that human thymus retains its intrinsic mechanisms of aging and susceptibility to stress-induced involution when transplanted into immunodeficient mice, offering a potentially useful in vivo model to study human thymic involution and to test therapeutic interventions.
Thymic involution
Involution (esoterism)
Humanized mouse
Cite
Citations (14)
During the past century of research on the thymus, the fact that every mammalian thymus undergoes marked morphological changes during the complex process of aging has been defined as a basic histogenetical rule. In characterizing the physiological (i.e. chronic) involution of the mammalian thymus, the term "Altersinvolution" referring to age-related involution is used. All other types of thymic involution are associated with an initial trigger and a relatively "acute" mechanism. In all of these factor-dependent cases of thymic involution, we use the term "akzidentelle Involution" (i.e. acute accidental thymic involution). Temporary thymic involution occurs during pregnancy, with a full restoration of the cellular microenvironment at the end of lactation. It is now clear that pregnancy alters the well established adaptational homeostasis between the neuroendocrine and immune axes. Such nonprogressive involution has also been observed during various seasons in various animals (i.e. seasonal involution). Changes characteristic of thymic involution begin during or soon after the first year of birth, and continue progressively throughout the entire life span. The 3% to 5% annual reduction rate of the cells of the human thymic microenvironment continues until middle age, when it slows down to less than 1% per year. According to the extrapolation of these results total loss of thymic reticuloepithelial tissue and the associated thymocytes should occur only at the age of 120 years in humans. This serious reduction of the thymic cellular microenvironment is a well controlled physiological process and is presumably under both local and global regulation by the cells of the RE meshwork and the neuroendocrine system, respectively. In humans, the age related decline in serum "facteur thymique sérique" (FTS) levels begins after 20 years of age and FTS completely disappears from the blood between the 5th and 6th decade of life. In contrast, the serum levels of thymosin-alpha 1 and thymopoietin seem to decline earlier, starting as early as 10 years of age. The influences of a variety of other hormones on the involution of the thymus have also been characterized: testosterone, estrogen and hydrocortisone treatment results in marked involution, cortisone and progesterone administration causes slight to moderate, while use of desoxycorticosterone has no effect. The experimental administration of thyroxine yielded dose dependent results: low doses resulted in thymic hypertrophy, higher doses produced slight hypertrophy and the highest employed doses caused thymic atrophy. The atrophy was of apicnotic type, very different from that detected after treatment with corticoid hormones. Thymus transplantation experiments indicate that age-related, physiological thymic involution has been genetically preprogrammed. Grafting of the thymus from one week old C3H leukemic strain mice into 6 month old hosts resulted in changes in thymic weight and an involution pattern that was synchronous in all recipients, in direct correlation with the glands in the donor, but not in the host. These data strongly suggest that the stimulus for thymus cell proliferation and differentiation is genetically determined within the organ implant. Since the thymus is the primary T-lymphopoietic organ during ontogenesis in the mammalian organism, its age-related involution with the already mentioned morphological alterations can be held responsible only for a decline in antigen-specific T lymphocyte immune functions. Thymic involution and diminished T lymphocyte proliferation can be partially restored by thymic tissue transplantation or use of thymic hormones. The leading physiological role of the thymic cellular microenvironment as a "clock" of the mammalian aging process is also discussed. "If present cells have come from pre-existing cells, then all cells can trace their ancestry back to the first formed cell in an unbroken line of descent."--Rudolf Virchow, 1858(1) "I have neve
Involution (esoterism)
Thymic involution
Homeostasis
Cite
Citations (143)
Abstract Productive thymopoiesis is essential for a robust and healthy immune system. Thymus unfortunately is acutely sensitive to stress resulting in involution and decreased T cell production. Thymic involution is a complication of many clinical settings, including infection, malnutrition, and irradiation or immunosuppressive therapies. Little is known, however, about intrathymic mechanisms that may actively contribute to thymus atrophy or initiate thymic recovery following stress events. In this work, phenotypic, histologic and transcriptome/pathway analysis was performed to identify putative intrathymic mechanisms that drive endotoxemia-induced involution of murine thymic tissue. Thymus atrophy in this murine model was confirmed by down-regulation of genes involved in T cell development, cell activation, and cell cycle progression, correlating with observed phenotypic and histologic thymus involution. Significant gene changes support the hypothesis that multiple key intrathymic pathways are differentially activated during stress-induced thymic involution. These included direct activation of thymus tissue by LPS through TLR signaling, local expression of inflammatory cytokines, inhibition of T cell signaling, and induction of wound healing/tissue remodeling. Taken together, these observations demonstrated that both systemic and direct intrathymic responses to endotoxin challenge concurrently contribute to thymic involution during endotoxemia.
Thymic involution
Involution (esoterism)
Cite
Citations (1)
Age-related thymic involution is characterized by a progressive regression in thymus size and a diminishment of thymic structure. A decrease in thymic compartments leads to the reduction of thymopoiesis. Thymic involution is closely associated with immunosenescence, a degeneration of the immune system primarily due to the alterations in T-cell composition. Strategies to improve the consequences of the aging thymus are currently under investigation. A wide array of knowledge has revealed a series of factors that are essential in the overall determination of thymic function and immune response. Evidence indicates that early programming of the thymus, sexual dimorphism, and the efficiency of specific T-cell progenitors and the thymic microenvironment are all crucial determinants of immune activity from early life through advanced ages. To fully understand the processes involved in age-related thymic involution, such determinants must be considered. The central purpose of this review is to emphasize previous and most recent evidence suggesting that these factors contribute to the influence of long-term immunity and ultimately shape the progression of thymic involution in advanced age.
Involution (esoterism)
Thymic involution
Immunosenescence
Sexual dimorphism
Naive T cell
Cite
Citations (155)