logo
    Reproductive barriers between two sympatric beetle species specialized on different host plants
    26
    Citation
    47
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Knowledge on interspecific pre- and post-zygotic isolation mechanisms provides insights into speciation patterns. Using crosses (F(1) and backcrosses) of two closely related flea beetles species, Altica fragariae and A. viridicyanea, specialized on different hosts in sympatry, we measured: (a) the type of reproductive isolation and (b) the inheritance mode of preference and host-specific performance, using a joint-scaling test. Each species preferred almost exclusively its host plant, creating strong prezygotic isolation between them, and suggesting that speciation may occur at least partly in sympatry. Reproductive isolation was intrinsic between females of A. fragariae and either A. viridicyanea or F(1) males, whereas the other crosses showed ecologically dependent reproductive isolation, suggesting ecological speciation. The genetic basis of preference and performance was at least partially independent, and several loci coded for preference, which limits the possibility of sympatric speciation. Hence, both ecological and intrinsic factors may contribute to speciation between these species.
    Keywords:
    Reproductive isolation
    Ecological speciation
    Genetic algorithm
    Incipient speciation
    Sympatric speciation is today generally viewed as plausible, and some well-supported examples exist, but its relative contribution to biodiversity remains to be established. We here quantify geographic overlap of sister species of heliconiine butterflies, and use age-range correlations and spatial simulations of the geography of speciation to infer the frequency of sympatric speciation. We also test whether shifts in mimetic wing colour pattern, host plant use and climate niche play a role in speciation, and whether such shifts are associated with sympatry. Approximately a third of all heliconiine sister species pairs exhibit near complete range overlap, and analyses of the observed patterns of range overlap suggest that sympatric speciation contributes 32 %–95 % of speciation events. Müllerian mimicry colour patterns and host plant choice are highly labile traits that seem to be associated with speciation, but we find no association between shifts in these traits and range overlap. In contrast, climatic niches of sister species are more conserved. Unlike birds and mammals, sister species of heliconiines are often sympatric and our inferences using the most recent comparative methods suggest that sympatric speciation is common. However, if sister species spread rapidly into sympatry (e.g. due to their similar climatic niches), then assumptions underlying our methods would be violated. Furthermore, although we find some evidence for the role of ecology in speciation, ecological shifts did not show the associations with range overlap expected under sympatric speciation. We delimit species of heliconiines in three different ways, based on "strict and " "relaxed" biological species concepts (BSC), as well as on a surrogate for the widely-used "diagnostic" version of the phylogenetic species concept (PSC). We show that one reason why more sympatric speciation is inferred in heliconiines than in birds may be due to a different culture of species delimitation in the two groups. To establish whether heliconiines are exceptional will require biogeographic comparative studies for a wider range of animal taxa including many more invertebrates.
    Genetic algorithm
    Ecological speciation
    Character displacement
    Incipient speciation
    Parapatric speciation
    Citations (48)
    Abstract The process of speciation generates biodiversity. According to the null model of speciation, barriers between populations arise in allopatry, where, prior to biology, geography imposes barriers to gene flow. On the other hand, sympatric speciation requires that the process of speciation happen in the absence of a geographical barrier, where the members of the population have no spatial, temporal barriers. Several attempts have been made to theoretically identify the conditions in which speciation can occur in sympatry. However, these efforts suffer from several limitations. We propose a model for sympatric speciation based on adaptation for resource utilization. We use a genetics-based model to investigate the relative roles of prezygotic and postzygotic barriers, from the context of ecological disruptive selection, sexual selection, and genetic architecture, in causing and maintaining sympatric speciation. Our results show that sexual selection that acts on secondary sexual traits does not play any role in the process of speciation in sympatry and that assortative mating based on an ecologically relevant trait forces the population to show an adaptive response. We also demonstrate that understanding the genetic architecture of the trait under ecological selection is very important and that it is not required for the strength of ecological disruptive selection to be very high in order for speciation to occur in sympatry. Our results provide an insight into the kind of scenarios in which sympatric speciation can be demonstrated in the lab.
    Disruptive selection
    Ecological speciation
    Genetic algorithm
    Incipient speciation
    Assortative mating
    When hybridization results in reduced fitness, natural selection is expected to favor the evolution of traits that minimize the likelihood of hybridizing in the first place. This process, termed reinforcement (or, more generally, reproductive character displacement), thereby contributes to the evolution of enhanced reproductive isolation between hybridizing groups. By enhancing reproductive isolation in this way, reinforcement plays an important role in the final stages of speciation. However, reinforcement can also contribute to the early stages of speciation. Specifically, because selection to avoid hybridization occurs only in sympatric populations, the unfolding of reinforcement can lead to the evolution of traits in sympatric populations that reduce reproduction between conspecifics in sympatry versus those in allopatry. Thus, reinforcement between species can lead to reproductive isolation-and possibly speciation-between populations in sympatry versus those in allopatry or among different sympatric populations. Here, I describe how this process can occur, the conditions under which it is most likely to occur, and the empirical data needed to evaluate the hypothesis that reinforcement can initiate speciation.
    Reproductive isolation
    Genetic algorithm
    Incipient speciation
    Character displacement
    Ecological speciation
    Citations (50)
    Understanding speciation requires discerning how reproductive barriers to gene flow evolve between previously interbreeding populations. Models of sympatric speciation for phytophagous insects posit that reproductive isolation can evolve in the absence of geographic isolation as a consequence of an insect shifting and ecologically adapting to a new host plant. One important adaptation contributing to sympatric differentiation is host‐specific mating. When organisms mate in preferred habitats, a system of positive assortative mating is established that facilitates sympatric divergence. Models of host fidelity generally assume that host choice is determined by the aggregate effect of alleles imparting positive preferences for different plant species. But negative effect genes for avoiding nonnatal plants may also influence host use. Previous studies have shown that apple and hawthorn‐infesting races of Rhagoletis pomonella flies use volatile compounds emitted from the surface of fruit as key chemosensory cues to recognize and distinguish between their host plants. Here, we report results from field trials indicating that in addition to preferring the odor of their natal fruit, apple and hawthorn flies, and their undescribed sister species infesting flowering dogwood (Cornus florida), also avoid the odors of nonnatal fruit. We discuss the implications of nonnatal fruit avoidance for the evolutionary dynamics and genetics of sympatric speciation. Our findings reveal an under appreciated role for habitat avoidance as a potential postmating, as well as prezygotic, barrier to gene flow.
    Reproductive isolation
    Ecological speciation
    Assortative mating
    Mating preferences
    Genetic algorithm
    Incipient speciation
    Disruptive selection
    Coyne and Orr found that mating discrimination (premating isolation) evolves much faster between sympatric than allopatric Drosophila species pairs. Their meta-analyses established that this pattern, expected under reinforcement, is common and that Haldane's rule is ubiquitous in Drosophila species divergence. We examine three possible contributors to the reinforcement pattern: intrinsic postzygotic isolation, dichotomized as to whether hybrid males show complete inviability/sterility; host-plant divergence, as a surrogate for extrinsic postzygotic isolation; and X chromosome size, whether roughly 20% or 40% of the genome is X-linked. We focus on "young" species pairs with overlapping ranges, contrasted with allopatric pairs. Using alternative criteria for "sympatry" and tests that compare either level of prezygotic isolation in sympatry or frequency of sympatry, we find no statistically significant effects associated with X chromosome size or our coarse quantifications of intrinsic postzygotic isolation or ecological differentiation. Although sympatric speciation seems very rare in animals, the pervasiveness of the reinforcement pattern and the commonness of range overlap for close relatives indicate that speciation in Drosophila is often not purely allopatric. It remains to determine whether increased premating isolation with sympatry results from secondary contact versus parapatric speciation and what drives this pattern.
    Reproductive isolation
    Ecological speciation
    Parapatric speciation
    Incipient speciation
    Genetic algorithm
    Character displacement
    Drosophila pseudoobscura
    Citations (62)
    Ecological speciation
    Genetic algorithm
    Reproductive isolation
    Incipient speciation
    Disruptive selection
    Genetic divergence
    Divergence (linguistics)
    Reproductive isolation
    Ecological speciation
    Genetic algorithm
    Etheostoma
    Incipient speciation
    Citations (27)
    How natural selection might be involved in speciation remains a fundamental question in evolutionary biology. When two or more species co-occur in the same areas, natural selection may favor divergence in mating traits. By acting in sympatric but not allopatric populations, natural selection can also affect mate choice within species and ultimately initiate speciation among conspecific populations. Here, we address this potential effect in the sea rock-pool beetles Ochthebius quadricollis and O. urbanelliae. The two species, which inhabit the Mediterranean coasts, co-occurr syntopically in an area along the Italian Tyrrhenian coast and completed reproductive isolation by reinforcement. In this article, through mating trials under laboratory conditions between conspecific populations, we found in O. quadricollis no deviations from random mating. Conversely, in O. urbanelliae, we found a clear pattern of premating isolation between the reinforced populations sympatric with O. quadricollis and those nonreinforced allopatric. This pattern is consistent with the view that natural selection, which completed the reproductive isolation between the two species in sympatry, led incidentally also to partial premating reproductive isolation (I(PSI) estimator from 0.683 to 0.792) between conspecific populations of O. urbanelliae. This case study supports an until recently underappreciated role of natural selection resulting from species interactions in initiating speciation.
    Reproductive isolation
    Ecological speciation
    Genetic algorithm
    Incipient speciation
    Ecological selection
    Assortative mating
    Character displacement
    Abstract The process of speciation is the source of biodiversity. The most popularly accepted mode of speciation is allopatric speciation, where geography imposes the initial barrier to gene flow, and then biological barriers come up. On the other hand, sympatric speciation, which was not accepted as a possibility for long, requires that the process of speciation happen in the absence of a geographical barrier, in a well-mixed population. Several attempts have been made to theoretically identify the conditions in which speciation can occur in sympatry, but have several problems associated with them. We propose a model for sympatric speciation based on adaptation for resource utilization. We use this genetics- based model to investigate the relative roles of prezygotic and postzygotic barriers, from the context of ecological disruptive selection, sexual selection, and genetic architecture, in causing and maintaining sympatric speciation. We show that sexual selection that acts on secondary sexual traits does not play any role in the process of speciation in sympatry, and that assortative mating based on an ecologically relevant trait forces the population to show an adaptive response. We also demonstrate that understanding the genetic architecture of the trait under ecological selection is very important, and that it is not required for the strength of ecological disruptive selection to be very high in order for speciation to occur in sympatry. With this, we provide an insight into the kind of scenarios in which sympatric speciation can be demonstrated in lab.
    Disruptive selection
    Ecological speciation
    Genetic algorithm
    Incipient speciation
    Assortative mating
    Citations (0)
    Knowledge on interspecific pre- and post-zygotic isolation mechanisms provides insights into speciation patterns. Using crosses (F(1) and backcrosses) of two closely related flea beetles species, Altica fragariae and A. viridicyanea, specialized on different hosts in sympatry, we measured: (a) the type of reproductive isolation and (b) the inheritance mode of preference and host-specific performance, using a joint-scaling test. Each species preferred almost exclusively its host plant, creating strong prezygotic isolation between them, and suggesting that speciation may occur at least partly in sympatry. Reproductive isolation was intrinsic between females of A. fragariae and either A. viridicyanea or F(1) males, whereas the other crosses showed ecologically dependent reproductive isolation, suggesting ecological speciation. The genetic basis of preference and performance was at least partially independent, and several loci coded for preference, which limits the possibility of sympatric speciation. Hence, both ecological and intrinsic factors may contribute to speciation between these species.
    Reproductive isolation
    Ecological speciation
    Genetic algorithm
    Incipient speciation