logo
    Three rearrangements of chromosome 5 in a patient with myelodysplastic syndrome: an atypical deletion 5q, a complex intrachromosomal rearrangement of chromosome 5, and a paracentric inversion of chromosome 5
    6
    Citation
    25
    Reference
    10
    Related Paper
    Citation Trend
    Keywords:
    Chromosomal inversion
    Breakpoint
    Chromosomal rearrangement
    Gene rearrangement
    Derivative chromosome
    Ambras syndrome (AMS) is a unique form of universal congenital hypertrichosis. In patients with this syndrome, the whole body is covered with fine long hair, except for areas where normally no hair grows. There is accompanying facial dysmorphism and teeth abnormalities, including retarded first and second dentition and absence of teeth. In 1993, Baumeister et al. reported an isolated case of Ambras syndrome in association with a pericentric inversion of chromosome 8. Subsequently, another patient with congenital hypertrichosis and rearrangement of chromosome 8 was reported by Balducci et al. (1998). Both of these patients have a breakpoint in 8q22 in common suggesting that this region of chromosome 8 contains a gene involved in regulation of hair growth. In order to precisely determine the nature of the rearrangement in the case of Ambras syndrome, we have used fluorescent in situ hybridization (FISH) analysis. We have cloned the inversion breakpoints in this patient and generated a detailed physical map of the inversion breakpoint interval. Analysis of the transcripts that map in the vicinity of the breakpoints revealed that the inversion does not disrupt a gene, and suggests that the phenotype is caused by a position effect.
    Breakpoint
    Chromosomal inversion
    Hypertrichosis
    Chromosomal rearrangement
    Position effect
    Positional cloning
    Citations (25)
    We studied a collection of 746 chromosome rearrangements all induced by the activity of members of the P family of transposable elements in Drosophila melanogaster. The chromosomes ranged from simple inversions to complex rearrangements. The distribution of complex rearrangement classes was of the kind expected if each rearrangement came about from a single multibreak event followed by random rejoining of chromosome segments, as opposed to a series of two-break events. Most breakpoints occurred at or very near (within a few hundred nucleotide pairs) the sites of preexisting P elements, but these elements were often lost during the rearrangement event. There were also a few cases of apparent gain of P elements. In cases in which both breakpoints of an inversion retained P elements, that inversion was capable of reverting at high frequencies to the original sequence or something close to it. This reversion occurred with sufficient precision to restore the function of a gene, held-up-b, which had been mutated by the breakpoint. However, some of the reversions had acquired irregularities at the former breakpoints that were detectable either by standard cytology or by molecular methods. The revertants themselves retained the ability to undergo further rearrangements depending on the presence of P elements. We interpret these results to rule out the simplest hypotheses of rearrangement formation that involve cointegrate structures or homologous recombination. The data provide a general picture of the rearrangement process and its possible relationship to transposition.
    Citations (155)
    We describe a complex and unique, de novo apparently balanced translocation involving chromosomes 4, 18, and 21 with 4 breakpoints, in a patient who was referred for an evaluation of possible fragile-X syndrome. Fluorescence in situ hybridization (FISH) confirmed the complexity of the rearrangement and showed the derivative 21 to be composed of 3 distinct segments derived from chromosomes 21, 18, and 4. The derivative chromosome 18 had undergone a double translocation, the first such event to be described in constitutional complex chromosomal rearrangements (CCRs) involving chromosome 18. A review of these CCRs suggests the existence of a breakpoint "hot spot" on 18q21. Am. J. Med. Genet. 78:44–51, 1998. © 1998 Wiley-Liss, Inc.
    Breakpoint
    Chromosomal rearrangement
    Derivative chromosome
    Abstract We have used the inversion system of Drosophila pseudoobscura to investigate how genetic flux occurs among the gene arrangements. The patterns of nucleotide polymorphism at seven loci were used to infer gene conversion events between pairs of different gene arrangements. We estimate that the average gene conversion tract length is 205 bp and that the average conversion rate is 3.4 × 10−6, which is 2 orders of magnitude greater than the mutation rate. We did not detect gene conversion events between all combinations of gene arrangements even though there was sufficient nucleotide variation for detection and sufficient opportunity for exchanges to occur. Genetic flux across the inverted chromosome resulted in higher levels of differentiation within 0.1 Mb of inversion breakpoints, but a slightly lower level of differentiation in central inverted regions. No gene conversion events were detected within 17 kb of an inversion breakpoint suggesting that the formation of double-strand breaks is reduced near rearrangement breakpoints in heterozygotes. At least one case where selection rather than proximity to an inversion breakpoint is responsible for reduction in polymorphism was identified.
    Breakpoint
    Drosophila pseudoobscura
    Gene conversion
    Chromosomal inversion
    Chromosomal rearrangement
    Concerted evolution
    Citations (76)
    Abstract Cytogenetic analysis of DNA from a girl with severe psychomotor retardation revealed a de novo pericentric inversion of chromosome 2: 46,XX,inv(2)(p15q24.2). In order to elucidate the possible role of the inversion in the girl's abnormal phenotype, we analyzed the inversion breakpoints. FISH analysis revealed BAC clones spanning the breakpoints at 2p and 2q of the inversion. Southern blot hybridization with DNA probes from the BAC regions was used to refine the localization of the breakpoints, followed by inverse‐PCR which enabled us to sequence the inversion breakpoints. We found a complex chromosomal rearrangement, including five breakpoints, four at 2q and one at 2p joined with minor insertions/deletions of a few bases. The breakpoint at 2p was within the NRXN1 gene that has previously been associated with autism, intellectual disabilities, and psychiatric disorders. In 2q, the breakpoints disrupted two genes, TANC1 and RBMS1 ; the phenotypic effect of these genes is not currently known. © 2011 Wiley‐Liss, Inc.
    Breakpoint
    Chromosomal inversion
    Southern blot
    Chromosomal rearrangement
    Psychomotor retardation
    Citations (10)