logo
    The Dolichos biflorus seed lectin contains two structurally related subunits. A cDNA library was constructed using RNA isolated from D. biflorus seeds actively synthesizing the seed lectin. The library was expressed in Escherichia coli using a lambda Charon 16 vector, and lectin‐specific antiserum was used to isolate a seed lectin cDNA. Hybridization of the D. biflorus seed lectin cDNA to RNA isolated from seeds actively producing both lectin subunits identifies a single‐size RNA of 1100 bases. An oligodeoxyribonucleotide probe, constructed from an amino acid sequence common to both lectin subunits, detects the same size RNA. Translation of seed mRNA in vitro and immunoprecipitation of translation products using a lectin‐specific antiserum yields a single polypeptide of slightly higher molecular mass than the largest seed lectin subunit. This seed lectin precursor is indistinguishable from a polypeptide synthesized from mRNA hybrid selected by the seed lectin cDNA. These data support the existence of a single polypeptide precursor for both subunit types of the D. biflorus seed lectin and suggest that differences between the subunit types arise by posttranslational processing.
    CD69
    C-type lectin
    The complement system is an effector mecha- nism in immunity. It is activated in three ways, the classical, alternative and lectin pathways. The lectin path- way is initiated by the binding of mannose-binding lectin (MBL) or ficolins to carbohydrates on the surfaces of pathogens. In humans, MBL and three types of ficolins (L-ficolin, H-ficolin, and M-ficolin) are present in plasma. Of these lectins, at least, MBL, L-ficolin, and H-ficolin are complexed with three types of MBL-associated serine proteases (MASPs), MASP-1, MASP-2, and MASP-3 and their truncated proteins (MAp44 and sMAP). In the lectin pathway, the lectin-MASP complex (i.e., a complex of lectin, MASPs and their truncated proteins) binds to pathogens, resulting in the activation of C4 and C2 to generate a C3 convertase capable of activating C3. MASP- 2 is involved in the activation of C4 and C2. MASP-1 activates C2 and MASP-2. The functions of MASP-3, sMAP, and MAp44 in the lectin pathway remain unknown. MASP-1 and MASP-3 also have a role in the alternative pathway. MBL and ficolins are able to bind to a variety of pathogens depending on their carbohydrate binding speci- ficity, resulting in the activation of the lectin pathway. Deficiencies of the components of the lectin pathway are associated to susceptibility to infection, indicating an important role of the lectin pathway in innate immunity. The lectin-MASP complex is also involved in innate immunity by activating the coagulation system. Recent findings suggest a crucial role of MASP-3 in development.
    Ficolin
    Lectin pathway
    C-type lectin
    MASP1
    C3-convertase
    CD69
    Complement component 2
    Citations (0)
    Abstract The lectin pathway of complement is activated by multimolecular complexes that recognize and bind to microbial polysaccharides. These complexes comprise a multimeric carbohydrate recognition subunit (either mannan-binding lectin (MBL) or a ficolin), three MBL-associated serine proteases (MASP-1, -2, and -3), and MAp19 (a truncated product of the MASP-2 gene). In this study we report the cloning of chicken MASP-2, MASP-3, and MAp19 and the organization of their genes and those for chicken MBL and a novel ficolin. Mammals usually possess two MBL genes and two or three ficolin genes, but chickens have only one of each, both of which represent the undiversified ancestors of the mammalian genes. The primary structure of chicken MASP-2 is 54% identical with those of the human and mouse MASP-2, and the organization of its gene is the same as in mammals. MASP-3 is even more conserved; chicken MASP-3 shares ∼75% of its residues with human and Xenopus MASP-3. It is more widely expressed than other lectin pathway components, suggesting a possible function of MASP-3 different from those of the other components. In mammals, MASP-1 and MASP-3 are alternatively spliced products of a single structural gene. We demonstrate the absence of MASP-1 in birds, possibly caused by the loss of MASP-1-specific exons during phylogeny. Despite the lack of MASP-1-like enzymatic activity in sera of chicken and other birds, avian lectin pathway complexes efficiently activate C4.
    Ficolin
    Lectin pathway
    C-type lectin
    CD69
    MASP1
    Complement component 2
    Citations (56)
    MBL-associated serine protease(MASP) and mannan-binding lectin(MBL) are key factors of the lectin pathway of complement activation and play an important role in the defense.MBL or ficolin can form complexes with sugars presented on pathogens through its carbohydrate recognition domain(CRD) and its collagen-like region(CLR) can recognize and binding to MASP.MBL can activity the zymogens of MASP which is a key enzyme and activate the complement cascade through lectin pathway.
    MASP1
    Lectin pathway
    Ficolin
    C-type lectin
    Complement control protein
    Complement component 2
    Citations (0)
    Abstract Mannose-binding lectin (MBL) is a C-type lectin involved in the first line of host defense against pathogens and it requires MBL-associated serine protease (MASP) for activation of the complement lectin pathway. To elucidate the origin and evolution of MBL, MBL-like lectin was isolated from the plasma of a urochordate, the solitary ascidian Halocynthia roretzi, using affinity chromatography on a yeast mannan-Sepharose. SDS-PAGE of the eluted proteins revealed a major band of ∼36 kDa (p36). p36 cDNA was cloned from an ascidian hepatopancreas cDNA library. Sequence analysis revealed that the carboxy-terminal half of the ascidian lectin contains a carbohydrate recognition domain (CRD) that is homologous to C-type lectin, but it lacks a collagen-like domain that is present in mammalian MBLs. Purified p36 binds specifically to glucose but not to mannose or N-acetylglucosamine, and it was designated glucose-binding lectin (GBL). The two ascidian MASPs associated with GBL activate ascidian C3, which had been reported to act as an opsonin. The removal of GBL-MASPs complex from ascidian plasma using Ab against GBL inhibits C3-dependent phagocytosis. These observations strongly suggest that GBL acts as a recognition molecule and that the primitive complement system, consisting of the lectin-proteases complex and C3, played a major role in innate immunity before the evolution of an adaptive immune system in vertebrates.
    Lectin pathway
    C-type lectin
    Ficolin
    Collectin
    MASP1
    Citations (129)
    Deficiency of mannose-binding lectin (MBL), a recognition molecule of the lectin pathway of complement, is associated with increased susceptibility to infections. The high frequency of MBL deficiency suggests that defective MBL-mediated innate immunity can be compensated by alternative defense strategies. To examine this hypothesis, complement activation by MBL-binding ligands was studied. The results show that the prototypic MBL ligand mannan can induce complement activation via both the lectin pathway and the classical pathway. Furthermore, antibody binding to mannan restored complement activation in MBL-deficient serum in a C1q-dependent manner. Cooperation between the classical pathway and the lectin pathway was also observed for complement activation by protein 60 from Listeria monocytogenes. MBL pathway analysis at the levels of C4 and C5b-9 in the presence of classical pathway inhibition revealed a large variation of MBL pathway activity, depending on mbl2 gene polymorphisms. MBL pathway dysfunction in variant allele carriers is associated with reduced MBL ligand binding and a relative increase of low-molecular-mass MBL. These findings indicate that antibody-mediated classical pathway activation can compensate for impaired target opsonization via the MBL pathway in MBL-deficient individuals, and imply that MBL deficiency may become clinically relevant in absence of a concomitant adaptive immune response.
    Lectin pathway
    C-type lectin
    Ficolin
    Antibody opsonization
    Complement component 2
    Collectin
    Citations (75)