logo
    Persistent coherence and spin polarization of topological surface states on topological insulators
    19
    Citation
    31
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Gapless surface states on topological insulators are protected from elastic scattering on nonmagnetic impurities, which makes them promising candidates for low-power electronic applications. However, for widespread applications, these states should remain coherent and significantly spin polarized at ambient temperatures. Here, we studied the coherence and spin structure of the topological states on the surface of a model topological insulator, Bi${}_{2}$Se${}_{3}$, at elevated temperatures in spin- and angle-resolved photoemission spectroscopy. We found an extremely weak broadening and essentially no decay of spin polarization of the topological surface state up to room temperature. Our results demonstrate that the topological states on surfaces of topological insulators could serve as a basis for room-temperature electronic devices.
    Keywords:
    Topological insulator
    Surface States
    Gapless playback
    A workable model for describing dislocation lines introduced into a three-dimensional topological insulator is proposed. We show how fragile surface Dirac cones of a weak topological insulator evolve into protected gapless helical modes confined to the vicinity of a dislocation line. It is demonstrated that surface Dirac cones of a topological insulator (either strong or weak) acquire a finite-size energy gap when the surface is deformed into a cylinder penetrating the otherwise surfaceless system. We show that, when a dislocation with a nontrivial Burgers vector is introduced, the finite-size energy gap plays the role of stabilizing the one-dimensional gapless states.
    Gapless playback
    Topological insulator
    Burgers vector
    Surface States
    Citations (57)
    Using high-resolution Nano-Angle Resolved Photoemission Spectroscopy (Nano-ARPES), we have determined the electronic structure of the surface and bulk states of topological insulator Sb2Te3 nanowires, which have been also characterized by magnetoresistance measurements. The observed Aharonov-Bohm-type oscillations could be unambiguously related to the transport by topological protected surface states directly recorded by photoemission. We have measured Nano-ARPES on individual nanowires of a few nanometers wide to provide direct evidence of the existence of the nontrivial topological surface states, as well as their doping. Our findings are consistent with theoretical predictions and confirm that the surface states of intrinsically doped unidimensional topological insulator nanowires are responsible for the quantum transport.
    Topological insulator
    Surface States
    Inverse photoemission spectroscopy
    Bi2Te3 is a topological insulator with time reversal symmetry possessing a single Dirac cone at a given surface. The surface states of topological insulators play a critical role in exotic physical phenomena and their applications. We investigate the surface states of thin films of Bi2Te3(111) using density‐functional theory including spin‐orbit coupling. Considering one to six quintuple layers (QLs) of Bi2Te3 films, we identify the surface states from calculated band structures using the decay length of the surface states and electron density plots. We show that the films of 1 and 2 QLs are too thin to hold the surface states protected topologically, and that for thicker films bands identified as surface states at Γ̄ lose their surface‐state features away from Γ̄. This method can be applied to other topological insulators.
    Topological insulator
    Surface States
    Density of states
    Citations (0)
    Proximity-effect-induced superconductivity was studied in epitaxial topological insulator Bi2Se3 thin films grown on superconducting NbSe2 single crystals. A point contact spectroscopy (PCS) method was used at low temperatures down to 40 mK. An induced superconducting gap in Bi2Se3 was observed in the spectra, which decreased with increasing Bi2Se3 layer thickness, consistent with the proximity effect in the bulk states of Bi2Se3 induced by NbSe2. At very low temperatures, an extra point contact feature which may correspond to a second energy gap appeared in the spectrum. For a 16 quintuple layer Bi2Se3 on NbSe2 sample, the bulk state gap value near the top surface is ~ 159 {\mu}eV, while the second gap value is ~ 120 {\mu}eV at 40 mK. The second gap value decreased with increasing Bi2Se3 layer thickness, but the ratio between the second gap and the bulk state gap remained about the same for different Bi2Se3 thicknesses. It is plausible that this is due to superconductivity in Bi2Se3 topological surface states induced through the bulk states. The two induced gaps in the PCS measurement are consistent with the three-dimensional bulk state and the two-dimensional surface state superconducting gaps observed in the angle-resolved photoemission spectroscopy (ARPES) measurement.
    Topological insulator
    Surface States
    Citations (41)
    The Dirac cone on a surface of a topological insulator shows linear dispersion analogous to optics and its velocity depends on materials. We consider a junction of two topological insulators with different velocities, and calculate the reflectance and transmittance. We find that they reflect the backscattering-free nature of the helical surface states. When the two velocities have opposite signs, both transmission and reflection are prohibited for normal incidence, when a mirror symmetry normal to the junction is preserved. In this case we show that there necessarily exist gapless states at the interface between the two topological insulators. Their existence is protected by mirror symmetry, and they have characteristic dispersions depending on the symmetry of the system.
    Topological insulator
    Gapless playback
    Surface States
    Mirror symmetry
    Reflection
    Topological insulators in the ${\text{Bi}}_{2}{\text{Se}}_{3}$ family have an energy gap in the bulk and a gapless surface state consisting of a single Dirac cone. Low-frequency optical absorption due to the surface state is universally determined by the fine-structure constant. When the thickness of these three-dimensional topological insulators is reduced, they become quasi-two-dimensional insulators with enhanced absorbance. The two-dimensional insulators can be topologically trivial or nontrivial depending on the thickness, and we predict that the optical absorption is larger for topological nontrivial case compared with the trivial case. Since the three-dimensional topological insulator surface state is intrinsically gapless, we propose its potential application in wide bandwidth, high-performance photodetection covering a broad spectrum ranging from terahertz to infrared. The performance of photodetection can be dramatically enhanced when the thickness is reduced to several quintuple layers with a widely tunable band gap depending on the thickness.
    Topological insulator
    Gapless playback
    Photodetection
    Surface States
    Citations (0)
    The layered MnBi2nTe3n+1 family represents the first intrinsic antiferromagnetic topological insulator (AFM TI, protected by a combination symmetry ) ever discovered, providing an ideal platform to explore novel physics such as quantum anomalous Hall effect at elevated temperature and axion electrodynamics. Recent angle-resolved photoemission spectroscopy (ARPES) experiments on this family have revealed that all terminations exhibit (nearly) gapless topological surface states (TSSs) within the AFM state, violating the definition of the AFM TI, as the surfaces being studied should be -breaking and opening a gap. Here we explain this curious paradox using a surface-bulk band hybridization picture. Combining ARPES and first-principles calculations, we prove that only an apparent gap is opened by hybridization between TSSs and bulk bands. The observed (nearly) gapless features are consistently reproduced by tight-binding simulations where TSSs are coupled to a Rashba-split bulk band. The Dirac-cone-like spectral features are actually of bulk origin, thus not sensitive to the-breaking at the AFM surfaces. This picture explains the (nearly) gapless behaviour found in both Bi2Te3- and MnBi2Te4-terminated surfaces and is applicable to all terminations of MnBi2nTe3n+1 family. Our findings highlight the role of band hybridization, superior to magnetism in this case, in shaping the general surface band structure in magnetic topological materials for the first time.
    Topological insulator
    Gapless playback
    Surface States
    Magnetism
    Citations (35)
    Gapless surface states on topological insulators are protected from elastic scattering on nonmagnetic impurities, which makes them promising candidates for low-power electronic applications. However, for widespread applications, these states should remain coherent and significantly spin polarized at ambient temperatures. Here, we studied the coherence and spin structure of the topological states on the surface of a model topological insulator, Bi${}_{2}$Se${}_{3}$, at elevated temperatures in spin- and angle-resolved photoemission spectroscopy. We found an extremely weak broadening and essentially no decay of spin polarization of the topological surface state up to room temperature. Our results demonstrate that the topological states on surfaces of topological insulators could serve as a basis for room-temperature electronic devices.
    Topological insulator
    Surface States
    Gapless playback
    Citations (19)
    Topological insulators (quantum spin Hall systems) are insulating in the bulk but have gapless edge/surface states, which remain gapless even when nonmagnetic disorder or interaction is present. This robustness stems from the topological nature characterized by the Z2 topological number, and this offers us various kinds of new novel properties. We review prominent advances in theories and in experiments on topological insulators since their theoretical proposal in 2005.
    Topological insulator
    Gapless playback