logo
    We investigated the liquid crystal (LC) aligning capabilities and electrooptical characteristics of transparent Al-doped ZnO (ZnO:Al) electrodes substituting indium tin oxide (ITO) electrodes. Experimental results show that a uniform vertical LC alignment and a large pretilt angle were achieved using the ZnO:Al electrodes. The vertical alignment mode based on the ZnO:Al electrodes showed appropriate electrooptical characteristics and a high transparency in comparison with that based on the ITO electrodes. These results indicate that the transparent ZnO:Al electrodes of liquid crystal displays could substitute the ITO electrodes.
    Indium tin oxide
    Optical transparency
    Citations (2)
    Indium is widely used in some important fields due to its semiconductor and optoelectronic performance. While the reduction of indium minerals, as one of secondary resources, the amount of indium–tin oxide (ITO) waste target has been accumulated considerably. ITO film is the main functional fraction of LCD has consumed more than 60% of the indium production worldwide. Therefore, it is necessary to recycle indium from ITO waste. Some researchers have been done for proper treatment to recycle indium from ITO waste. In this paper, the extraction methods of indium from ITO waste target are introduced, and the advantages and disadvantages of each method are compared.
    Indium tin oxide
    Indium is a rare metal. The largest end use for indium is in thin-film coatings as indium oxide combinined with 10 percent tin oxide (ITO). However, indium has recycling rates less than 1%. Indium and tin are especially well suited for fused salt electrolysis because their low melting points. The electrochemical behaviour of indium and tin oxides was studied by cyclic voltammetry (CV) in molten LiCl-KCl. The direct deoxidation of indium and tin oxides was investigated. A new design of direct eletrolytic reduction was proposed taking into the low melting points of indium and tin.
    Indium tin oxide
    Citations (0)
    Substance flow analysis (SFA) of indium has been conducted in this study. The purpose of this study is to identify the relevant issues for the development of an efficient indium recycling system by performing SFA of indium supplied for indium-tin oxide (ITO) processing as transparent electrodes, which accounts for 86.9% of the total indium demand. In this study, as part of the development of substance and material flow data, (1) data on the flow of indium was collected and reviewed, (2) the amount of dissipated indium associated with the production of flat-panel displays (FPDs) were estimated and (3) its environmental impact was also assessed.The major conclusions are (a) 470 t-In is used in ITO for transparent electrodes, out of which 220 t-In is dissipated or potentially dissipated in Japan, and (b) 220 t-In of dissipated indium is equivalent to 11.4 TJ of energy consumption, 0.5×103 t of CO2 emissions, and 1.0×106 t of Total Materials Requirement (TMR).
    Indium tin oxide
    Material flow analysis
    In the work, sedimentation-stable sols of indium (III) and tin (IV) hydroxides were obtained by the Anion Resin Exchange Precipitation, which consists of the exchange reaction between the OH ions of the anion exchange resin and the anions of metal-containing solutions. The synthesized hydrosols were used to obtain conducting films of indium (III) In2O3 oxide and indium oxide doped with Tin In2O3: Sn, with a surface resistance of 4 kOhm/sq, thicknesses of 200–500 nm and a transparency of more than 85 %. The modes of applying precursors to glass substrates by the modified spray method and centrifugation method are selected. Films were studied using XRD, SEM, optical microscopy and spectrophotometry
    Indium tin oxide
    Tin oxide
    Citations (1)
    This work fabricates a nanowall electrode for achieving advanced liquid crystal (LC) devices and improving LC displays. The nanowall electrode consists of indium-tin-oxide (ITO) sheets stacked with nanowalls, and the nanowalls have a height and thickness of 4 µm and 500 nm, respectively. The high aspect ratio (8.0) of the nanowalls sets the nanowall electrode apart from previous electrodes. A flat electrode that comprises only ITO sheets is used to evaluate the nanowall electrode. The LC cell with the nanowall electrode exhibits better electro-optic properties than the LC cell with the flat electrode due to the strong transverse electric field and small subelectrode gap of the nanowall electrode. Especially, the operating voltage (3.7 V) of the nanowall cell is 36% smaller than that (5.8 V) of the flat cell. Therefore, nanowall electrodes have potential in LC lenses, LC antennas, metaverse displays, and digital optics.
    Indium tin oxide
    Citations (0)
    With the increasing industrial production and the broaden applications of indium tin oxide (ITO) materials, frequent exposure has posed great concerns for people, especially the workers in the indium related manufacturing plants. The exposed-workers have been reported to adverse effect and even die from the ITO-induced pulmonary disorders called "indium lung." In addition to the epidemiologic studies, the increasing animal studies also demonstrated the lung injuries induced by the acute or chronic respiratory exposure of ITO nanoparticles (ITO NPs). They could enter into the cells owing to the small particle size and induce oxidative stress, inflammatory responses, cytotoxicity or even genotoxicity. The indium ions released from the ITO particles via lysosomal acidification considered as the actual entity responsible for the toxicity of ITO NPs. To date, no effective therapies are available against ITO-induced pulmonary diseases, which calls for the full explorations of the pathological factors. Our present mini-review summarizes the current reports on ITO nanoparticles-induced pneumotoxic effect with focus on the indium ion release, which could help warrant the health risks of ITO and other ITO-based materials.
    Indium tin oxide
    Citations (3)