Quantitative sensory testing somatosensory profiles in patients with cervical radiculopathy are distinct from those in patients with nonspecific neck–arm pain
81
Citation
85
Reference
10
Related Paper
Citation Trend
Abstract:
The aim of this study was to establish the somatosensory profiles of patients with cervical radiculopathy and patients with nonspecific neck-arm pain associated with heightened nerve mechanosensitivity (NSNAP). Sensory profiles were compared to healthy control (HC) subjects and a positive control group comprising patients with fibromyalgia (FM). Quantitative sensory testing (QST) of thermal and mechanical detection and pain thresholds, pain sensitivity and responsiveness to repetitive noxious mechanical stimulation was performed in the maximal pain area, the corresponding dermatome and foot of 23 patients with painful C6 or C7 cervical radiculopathy, 8 patients with NSNAP in a C6/7 dermatomal pain distribution, 31 HC and 22 patients with FM. For both neck-arm pain groups, all QST parameters were within the 95% confidence interval of HC data. Patients with cervical radiculopathy were characterised by localised loss of function (thermal, mechanical, vibration detection P<.009) in the maximal pain area and dermatome (thermal detection, vibration detection, pressure pain sensitivity P<.04), consistent with peripheral neuronal damage. Both neck-arm pain groups demonstrated increased cold sensitivity in their maximal pain area (P<.03) and the foot (P<.009), and this was also the dominant sensory characteristic in patients with NSNAP. Both neck-arm pain groups differed from patients with FM, the latter characterised by a widespread gain of function in most nociceptive parameters (thermal, pressure, mechanical pain sensitivity P<.027). Despite commonalities in pain characteristics between the 2 neck-arm pain groups, distinct sensory profiles were demonstrated for each group.Keywords:
Dermatome
Neck pain
Quantitative sensory testing
Referred pain
Sensory threshold
Cervical radiculopathy
The aim of this study was to establish the somatosensory profiles of patients with cervical radiculopathy and patients with nonspecific neck-arm pain associated with heightened nerve mechanosensitivity (NSNAP). Sensory profiles were compared to healthy control (HC) subjects and a positive control group comprising patients with fibromyalgia (FM). Quantitative sensory testing (QST) of thermal and mechanical detection and pain thresholds, pain sensitivity and responsiveness to repetitive noxious mechanical stimulation was performed in the maximal pain area, the corresponding dermatome and foot of 23 patients with painful C6 or C7 cervical radiculopathy, 8 patients with NSNAP in a C6/7 dermatomal pain distribution, 31 HC and 22 patients with FM. For both neck-arm pain groups, all QST parameters were within the 95% confidence interval of HC data. Patients with cervical radiculopathy were characterised by localised loss of function (thermal, mechanical, vibration detection P<.009) in the maximal pain area and dermatome (thermal detection, vibration detection, pressure pain sensitivity P<.04), consistent with peripheral neuronal damage. Both neck-arm pain groups demonstrated increased cold sensitivity in their maximal pain area (P<.03) and the foot (P<.009), and this was also the dominant sensory characteristic in patients with NSNAP. Both neck-arm pain groups differed from patients with FM, the latter characterised by a widespread gain of function in most nociceptive parameters (thermal, pressure, mechanical pain sensitivity P<.027). Despite commonalities in pain characteristics between the 2 neck-arm pain groups, distinct sensory profiles were demonstrated for each group.
Dermatome
Neck pain
Quantitative sensory testing
Referred pain
Sensory threshold
Cervical radiculopathy
Cite
Citations (81)
Background and Objectives
Quantitative sensory testing (QST) is widely used to investigate peripheral and central sensitization. However, the comparative performance of different QST for diagnostic or prognostic purposes is unclear. We explored the discriminative ability of different quantitative sensory tests in distinguishing between patients with chronic neck pain and pain-free control subjects and ranked these tests according to the extent of their association with pain hypersensitivity.Methods
We performed a case-control study in 40 patients and 300 control subjects. Twenty-six tests, including different modalities of pressure, heat, cold, and electrical stimulation, were used. As measures of discrimination, we estimated receiver operating characteristic curves and likelihood ratios.Results
The following quantitative sensory tests displayed the best discriminative value: (1) pressure pain threshold at the site of the most severe neck pain (fitted area under the receiver operating characteristic curve, 0.92), (2) reflex threshold to single electrical stimulation (0.90), (3) pain threshold to single electrical stimulation (0.89), (4) pain threshold to repeated electrical stimulation (0.87), and (5) pressure pain tolerance threshold at the site of the most severe neck pain (0.86). Only the first 3 could be used for both ruling in and out pain hypersensitivity.Conclusions
Pressure stimulation at the site of the most severe pain and parameters of electrical stimulation were the most appropriate QST to distinguish between patients with chronic neck pain and asymptomatic control subjects. These findings may be used to select the tests in future diagnostic and longitudinal prognostic studies on patients with neck pain and to optimize the assessment of localized and spreading sensitization in chronic pain patients.Quantitative sensory testing
Neck pain
Sensory threshold
Referred pain
Summation
Hypoalgesia
Cite
Citations (29)
Quantitative sensory testing
Sensation
Sensory threshold
Glycated hemoglobin
Diabetic Neuropathy
Cite
Citations (1)
Dermatome
Quantitative sensory testing
Cite
Citations (28)
Sensation
Quantitative sensory testing
Sensory threshold
Pain sensation
Pain tolerance
Referred pain
Nociceptor
Cite
Citations (20)
To investigate the reproducibility of thermal thresholds, as measured by repeated quantitative sensory testing (QST) in healthy controls, and to asses if temperature sensitivity differs between healthy controls and a cohort of patients with persistent pain.A total of 54 healthy controls were compared with 25 consecutive patients selected for pain rehabilitation by multidisciplinary assessment teams.Heat and cold detection and pain thresholds in the forearm and neck were determined by QST. Reproducibility was evaluated by 2 consecutive tests 6-9 months apart.Thermal detection and pain thresholds were reproducible in a subgroup of 20 healthy controls. The patients had slightly increased heat and cold detection thresholds, but significantly lower thresholds for cold and heat pain. The most clear-cut differences between patients and healthy controls were observed for cold pain thresholds. Calculation of the differences between thermal detection and pain thresholds (delta values) further strengthened the differences between patients and healthy controls.Thermal detection and pain thresholds are reproducible over time, allowing longitudinal assessment of sensory function using QST. Although increased sensitivity to cold pain was the most prominent finding in this cohort of patients with persistent pain, calculation of the differences between thermal detection and pain thresholds may prove superior in detecting sensory alterations.
Quantitative sensory testing
Sensory threshold
Detection threshold
Cite
Citations (21)
Dermatome
Levobupivacaine
Quantitative sensory testing
Shoulder surgery
Ropivacaine
Sensory threshold
Sensation
Cite
Citations (8)
Objective: Distal and proximal entrapment neuropathies such as carpal tunnel syndrome (CTS) and cervical radiculopathy (CR) share similar etiologies. Experimental models suggest that, despite comparable etiology, pathomechanisms associated with injuries of the peripheral and central axon branches are distinct. This study therefore compared self-reported and elicited sensory profiles in patients with distal and proximal entrapment neuropathies.Methods: Patients with electrodiagnostically confirmed CTS (n = 103) and patients with CR (n = 23) were included in this study. A group of healthy participants served as controls (n = 39). Symptoms and sensory profiles were evaluated using quantitative sensory testing (QST) and a self-reported neuropathic pain questionnaire (painDETECT).Results: Both patient groups were characterized by a loss of function in thermal and mechanical detection in the main pain area and dermatome compared to healthy reference data (p < .001). There was no significant difference between patients with CTS and CR in pain and detection thresholds except for reduced vibration sense in the main pain area (p < .001) and reduced pressure pain sensitivity in the dermatome in patients with CR (p < .001). However, patients with CR reported higher pain intensities (p = .008), more severe pain attacks (p = .009) and evoked pain by light pressure (p = .002) compared to patients with CTS.Conclusion: While QST profiles were similar between patients with CTS and CR, self-reported pain profiles differed and may suggest distinct underlying mechanisms in these patient cohorts.
Dermatome
Entrapment Neuropathy
Quantitative sensory testing
Etiology
Sensory threshold
Cold sensitivity
Pathophysiology
Cite
Citations (24)
Pain following spinal cord injury has been classified as nociceptive (musculoskeletal, visceral) or neuropathic (above, at, below level). There is no clear relation between the etiology and reported symptoms. Thus, due to different underlying mechanisms, the treatment is often ineffective. We report on a patient with spinal cord injury with neurological level of injury at T8 suffering from bilateral burning and prickling pain in the T9-11 dermatomes bilaterally (at-level pain), as well as diffusely in both legs from below the torso (below-level pain), accompanied by musculoskeletal low back pain. Bilateral comparison of quantitative sensory testing (QST) and skin biopsy revealed completely different findings in the dermatome T9 despite identical at-level pain characteristics. On the right side, QST revealed a normal sensory profile; the intraepidermal nerve fiber density (IENFD) was reduced, but not as severe as the contralateral side. On the left side there was a severe sensory loss with a stronger reduction of the IENDF, similar to the areas below the neurological level. These findings were significantly related to the treatment results. Pregabalin induced unilateral pain relief only in the area with remaining sensory function, whereas the left-sided at-level pain was unchanged. Thus, 2 different underlying mechanisms leading to bilaterally neuropathic pain with identical symptoms and with different treatment success were demonstrated in a single patient. The at-level pain in areas with remaining sensory function despite IENFD reduction could be relieved by pregabalin. Thus, in an individual case, QST may be helpful to better understand pain-generating mechanisms and to initiate successful treatment.
Dermatome
Referred pain
Quantitative sensory testing
Sensory loss
Nerve Injury
Sensation
Cite
Citations (41)
Dermatome
Radicular pain
Referred pain
Lumbar Nerve
Cold sensitivity
Cite
Citations (5)