DNA Synthesis in Aluminum-Treated Roots of Barley
63
Citation
10
Reference
10
Related Paper
Citation Trend
Abstract:
When cell division in barley roots is halted by treatment with aluminum, DNA synthesis continues. However, the type of DNA synthesized has an unusual base composition and is metabolically labile. A part of this labile DNA was found in the form of a hybrid composed of genetic DNA and labile DNA.When cell division in barley roots is halted by treatment with aluminum, DNA synthesis continues. However, the type of DNA synthesized has an unusual base composition and is metabolically labile. A part of this labile DNA was found in the form of a hybrid composed of genetic DNA and labile DNA.
Cite
Citations (63)
In a soil bioassay, adult Deroceras reticulatum (Stylommatophora: Limacidae) and three different weight-classes of young Arion lusitanicus (Stylommatophora: Arionidae) were exposed to a single dosage (170 dauer larvae per g of soil) of the nematode Phasmarhabditis hermaphrodita monoxenically associated with the bacterium Moraxella osloensis. Groups of 10 slugs were continuously exposed to nematodes for 4 days, and then transferred individually to Petri-dishes containing a disc of Chinese cabbage as food. Food consumption—measured by image analysis—and slug mortality were recorded daily for 10 days. Food consumption was inhibited in both slug species tested. D. reticulatum stopped feeding 6 days after the start of nematode treatment, while all A. lusitanicus continued to feed. However, in the three weight-classes of A. lusitanicus (0.15 g, 0.24 g, 0.45 g), food consumption was reduced by at least 50 %. The greatest reduction in feeding, nearly 90 %, was noted in the smallest A. lusitanicus. The nematodes successfully killed D. reticulatum but were less efficient at killing young A. lusitanicus. At the end of the experiment, mortality was highest in D. reticultatum (98 %) and the smallest weight-class of A. lusitanicus (47 %). There was almost no mortality in the largest weight-class of A. lusitanicus treated with nematodes. P. hermaphrodita associated with M. osloensis can thus be considered as a biological control agent for young stages of A. lusitanicus for its effect as a feeding inhibitor, rather than for its ability to kill the slugs.
Slug
Cite
Citations (41)
In response to DNA damage, p53 undergoes post-translational modifications (including acetylation) that are critical for its transcriptional activity. However, the mechanism by which p53 acetylation is regulated is still unclear. Here, we describe an essential role for HLA-B-associated transcript 3 (Bat3)/Scythe in controlling the acetylation of p53 required for DNA damage responses. Depletion of Bat3 from human and mouse cells markedly impairs p53-mediated transactivation of its target genes Puma and p21 . Although DNA damage-induced phosphorylation, stabilization, and nuclear accumulation of p53 are not significantly affected by Bat3 depletion, p53 acetylation is almost completely abolished. Bat3 forms a complex with p300, and an increased amount of Bat3 enhances the recruitment of p53 to p300 and facilitates subsequent p53 acetylation. In contrast, Bat3-depleted cells show reduced p53–p300 complex formation and decreased p53 acetylation. Furthermore, consistent with our in vitro findings, thymocytes from Bat3-deficient mice exhibit reduced induction of puma and p21, and are resistant to DNA damage-induced apoptosis in vivo. Our data indicate that Bat3 is a novel and essential regulator of p53-mediated responses to genotoxic stress, and that Bat3 controls DNA damage-induced acetylation of p53.
Cite
Citations (125)
Cell Division in a Mutant of Salmonella typhimurium which is Temperature-sensitive for DNA Synthesis
SUMMARY: In Salmonella typhimurium PG154 the time taken for a round of DNA replication (C) at 37° is approximately 48 min. The time between the end of a round of DNA replication and the following cell division (D) is approximately 25 min. at 37°. In a temperature-sensitive mutant of S. typhimurium defective in the initiation of DNA synthesis, cell division at the restrictive temperature occurs at an approximately normal rate for 75 min., suggesting that C+D = 75 min.; the cells then elongate and form filaments. After about a further 1 h. in minimal medium at 38° cell division recommences at the ends of the filaments to form small cells. Filaments can divide at each end to produce more than one small cell. Once formed, small cells do not grow further. They do not synthesize DNA, RNA or protein and contain little DNA. Complete inhibition of DNA synthesis at the time of the shift stops cell division within about D min. and almost completely stops the production of small cells. A period of growth at 38° before the inhibition of DNA synthesis allows more division and the production of an almost normal number of small cells. Both the early divisions and the production of small cells are considered to be the result of the termination of rounds of DNA replication in the absence of new initiations.
Cite
Citations (25)
Holcus lanatus
Cite
Citations (21)
SUMMARY A hitherto unrecorded virus having flexible rod‐shaped particles about 740–760 × 13 nm was isolated from Anthoxanthum odoratwn L. It was transmitted by sap inoculation, but not by several species of insect, seed or soil to 18 species of Gramineae including wheat, oats and barley. In susceptible species the virus normally produced a mosaic mottling of the leaves which was sometimes followed by a necrotic streaking or striping.
Mosaic virus
Cite
Citations (6)
HLA-B-associated transcript 3 (BAT3) was originally identified as one of the genes located within human major histocompatibility complex. It encodes a large proline-rich protein with unknown function. In this study, we found that a fragment of the BAT3 gene product interacts with a candidate tumor suppressor, DAN, in the yeast-based two-hybrid system. We cloned the full-length rat BAT3 cDNA from a fibroblast 3Y1 cDNA library. Our sequence analysis has demonstrated that rat BAT3 cDNA is 3617 nucleotides in length and encodes a full-length BAT3 (1098 amino acids) with an estimated molecular mass of 114,801 daltons, which displays an 87.4% identity with human BAT3. The deletion experiment revealed that the N-terminal region (amino acid residues 1-80) of DAN was required for the interaction with BAT3. Green fluorescent protein-tagged BAT3 was largely localized in the cytoplasm of COS cells. Northern hybridization showed that BAT3 mRNA was expressed in all the adult rat tissues examined but predominantly in testis. In addition, the level of BAT3 mRNA expression was more downregulated in some of the transformed cells, including v-mos- and v-Ha-ras-transformed 3Y1 cells, than in the parental cells.
Cite
Citations (21)
Thymidine
Cite
Citations (25)
The ability of adriamycin to inhibit Z-DNA formation induced by a high-salt environment was investigated. ADM inhibited this conversion, such that in poly (dG-dC) total inhibition was observed at 1 ADM : 9 base pairs and in eukaryotic DNA (calf thymus) at 1 ADM : 11,5 base pairs. Even at low ADM con= centration, 1 ADM : 160 base pairs, some inhibition was observed. At similar ADM:DNA concentrations, an inhibition in DNA synthesis in cells in culture was observed, which showed some parallel with the inhibition of Z-DNA formation. A model is proposed where Z-DNA formation precedes DNA synthesis and where inhibition of the former could explain the antineoplastic nature of adriamycin.
Base (topology)
Cite
Citations (16)
Hydroxyurea (HU) preferentially inhibited deoxyribonucleic acid (DNA) replication and division in Saccharomyces cerevisiae . Growth, ribonucleic acid synthesis, and protein synthesis were less sensitive to this drug. Upon addition of HU, cells underwent one cycle of budding and the nuclei migrated into the necks between the mother cells and buds. Neither the nucleus nor the cells divided. Removal of HU allowed immediate resumption of DNA synthesis. Nuclear division, budding, and cell division occurred 1.5, 2, and 4 hr, respectively, after HU was removed. If protein synthesis was blocked at the time HU was removed, budding and cell division did not occur. These results were interpreted to indicate that HU prevents accumulation of the potential to initiate a new cell cycle.
Budding
Budding yeast
Cite
Citations (249)