logo
    Abstract:
    Delivering a missing gene or a functional substitute of a defective gene has the potential to revolutionize current medical care. Of the two gene delivery approaches, viral and synthetic vectors, synthetic cationic vectors possess several practical advantages but suffer from poor transfection efficiency. A new approach to gene delivery using charge-reversal amphiphiles is described. This synthetic vector transforms from a cationic to an anionic amphiphile intracellularly. This amphiphile performs two roles: first, it binds and then releases DNA, and second, as an anionic multicharged amphiphile, it destabilizes lipid bilayers. A charge-reversal amphiphile was synthesized and fully characterized, including the supramolecular complex it forms with DNA. Enhanced gene transfection was observed using these vectors compared to current cationic amphiphiles.
    Keywords:
    Cationic polymerization
    Stable multilayer films were fabricated on the basis of the alternating layer-by-layer assembly of a two-component bolaform supramolecular amphiphile and diazoresins, followed by photochemical cross-linking of the structure. UV-visible spectroscopy and atomic force microscopy revealed a uniform deposition process. Moreover, one component of the supramolecular amphiphile can be removed from the multilayer films after cross-linking between the second component and the diazoresin. The release and uptake of the imprinted supramolecular amphiphile component are shown to be reversible. Furthermore, uptake experiments of different molecules show the selectivity of the imprinted sites for the template molecule. Thus, surface-imprinted films can be formed by employing dissociable two-component supramolecular amphiphiles. This research reveals that supramolecular amphiphiles can be used as a novel concept for the construction of multilayer films, and it also provides a new method of generating surface-imprinted multilayers.
    Amphiphilic molecule
    Supramolecular chirality
    Component (thermodynamics)
    Citations (29)
    The relatively low transfection efficiency limits further application of polymeric gene carriers. It is imperative to exploit a universal and simple strategy to enhance the gene transfection efficiency of polymeric gene carriers. Herein, we prepared a cationic polypeptide poly(γ-aminoethylthiopropyl-l-glutamate) (PALG-MEA, termed PM) with a stable α-helical conformation, which can significantly improve the gene transfection efficiency of cationic polymers. PM can be integrated into polymeric gene delivery systems noncovalently through electrostatic interactions. With the assistance of PM, polymeric gene delivery systems exhibited excellent cellular uptake and endosomal escape, thereby enhancing transfection efficiency. The transfection enhancement effect of PM was applicable to a variety of cationic polymers such as polyethylenimine (PEI), poly-l-lysine (PLL), and polyamidoamine (PAMAM). The ternary gene delivery system PM/pshVEGF/PEI exhibited an excellent antitumor effect against the B16F10 tumor model. Moreover, we demonstrated that PM could also enhance the delivery of gene editing systems (sgRNA-Cas9 plasmids). This work provides a facile and effective strategy for constructing polymeric gene delivery systems with a high transfection efficiency.
    Polyethylenimine
    Cationic polymerization
    The development of gene therapy puts forward the requirements for efficient delivery of genetic information into diverse cells. However, in some cases of transfection, especially those for transfecting some primary cells and for delivering large size plasmid DNA (pDNA), the existing conventional transfection methods show poor efficiency. How to further improve transfection efficiency in these hard-to-achieve issues remains a crucial challenge. Here, we report a photothermal-assisted surface-mediated gene delivery based on a polydopamine-polyethylenimine (PDA-PEI) surface. The PDA-PEI surface was prepared through PEI-accelerated dopamine polymerization, which showed efficiency in the immobilization of PEI/pDNA polyplexes and remarkable photothermal properties. Upon IR irradiation, we observed improved transfection efficiencies of two important hard-to-achieve transfection issues, namely the transfection of primary endothelial cells, which are kinds of typical hard-to-transfect cells, and the transfection of cells with large-size pDNA. We demonstrate that the increases of transfection efficiency were due to the hyperthermia-induced pDNA release, the local cell membrane disturbance, and the polyplex internalization. This work highlights the importance of local immobilization and release of pDNA to gene deliveries, showing great potential applications in medical devices in the field of gene therapy.
    Polyethylenimine
    Internalization
    Citations (26)
    Abstract Lipophosphoramide-based cationic lipids are a class of synthetic vectors used for gene delivery that can be produced in multigram scale. The use of trimethylarsonium moiety as a cationic polar head was beneficial to produce efficient gene delivery vectors for in vivo applications. Moreover, this type of cationic lipid can also exhibit some bactericidal effects.
    Cationic polymerization
    Moiety
    A CO2-enhanced bola-type supramolecular amphiphile was constructed from a water-soluble pillar[5]arene and a CO2-responsive bola-amphiphile. The gas-responsive self-assembly behavior of this supramolecular amphiphile and its application in controlled release were investigated.
    Pillar
    Citations (17)
    Delivering a missing gene or a functional substitute of a defective gene has the potential to revolutionize current medical care. Of the two gene delivery approaches, viral and synthetic vectors, synthetic cationic vectors possess several practical advantages but suffer from poor transfection efficiency. A new approach to gene delivery using charge-reversal amphiphiles is described. This synthetic vector transforms from a cationic to an anionic amphiphile intracellularly. This amphiphile performs two roles: first, it binds and then releases DNA, and second, as an anionic multicharged amphiphile, it destabilizes lipid bilayers. A charge-reversal amphiphile was synthesized and fully characterized, including the supramolecular complex it forms with DNA. Enhanced gene transfection was observed using these vectors compared to current cationic amphiphiles.
    Cationic polymerization
    Citations (108)
    The success of gene therapy is largely dependent on the delivery vector system. Efficient transfection and nontoxicity are two of the most important requirements of an ideal gene delivery vector. To generate both an efficient and nontoxic vector, we rationally constructed polymeric vectors to have simultaneous multiple functions, i.e., controlled degradation, an endosome disruptive function, and positive charges. Remarkably, the transfection efficiency of network poly(amino ester) (n-PAE) synthesized in this manner was comparable to that of polyethylenimine (PEI), one of the most efficient polymeric gene delivery vectors reported to date. However, there was a marked difference in cytotoxicity between the polymers. The majority of PEI-transfected cells were granulated and dead, whereas most of the cells transfected with n-PAE were viable and healthy. Successive events of efficient endosome escape of n-PAE/DNA polyplex and n-PAE biodegradation should result in high transfection efficiency and favorable cell viability response. The n-PAE-mediated transfection was also very efficient in the presence of serum. These data show that the approach we applied is a very appropriate way of making an ideal gene delivery carrier.
    Polyethylenimine
    Cationic polymerization
    Citations (190)
    Gene therapy demonstrates promising prospects on cardiovascular diseases. However, nonviral gene delivery system has relatively low transfection efficiency, especially for endothelial cells (ECs). Herein, typical cell-penetrating peptide (TAT), nuclear localization signals (NLSs), and REDV functional peptide have been used to prepare multitargeting complexes. These complexes exhibit higher transfection efficiency owing to the targeting sequences of REDV and NLSs as well as the cell-penetrating function of TAT. The multifunction of the complexes provides high cell uptake, endo/lysosomal escape, and nucleus accumulation of the encapsulated DNA. Thus these multitargeting complexes can provide a potential platform for gene delivery, especially for EC transfection.
    Cell-penetrating peptide
    Citations (29)
    Abstract Supramolecular assemblies of gold complex‐based amphiphiles in aqueous media are highly structural sensitive to external environments, providing an attractive prospect for its application in soft functional materials. Notably, the development of a supramolecular assembly transformation of gold (III) amphiphiles directly controlled by counterion exchange is of fundamental importance for exerting the full potential of dynamic supramolecular assembly by external stimuli. Here we present a reversible supramolecular assembly of gold (III) amphiphiles controlled by counterions in aqueous media and their co‐assembly with gold nanoparticles.
    Aqueous medium
    Supramolecular assembly
    Citations (3)