Regulation of adenovirus alternative RNA splicing by dephosphorylation of SR proteins
Arvydas KanopkaOliver MühlemannSvend K. Petersen‐MahrtCamilla EstmerChristina ÖhrmalmGöran Akusjärvi
221
Citation
19
Reference
10
Related Paper
Citation Trend
Keywords:
Spliceosome
SR protein
Protein splicing
Exonic splicing enhancer
Dephosphorylation
Splicing factor
Minigene
Cite
The SR family of proteins plays important regulatory roles in the control of alternative splicing in a wide range of organisms. These factors affect splicing through both positive and negative controls of splice site recognition by pre-spliceosomal factors. Recent studies indicate that the Drosophila SR factor Transformer 2 (Tra2) activates and represses splicing through distinct and separable effector regions of the protein. While the interactions of its Arg-Ser-rich activator region have been well studied, cofactors involved in splicing repression have yet to be found. Here we use a luciferase-based splicing reporter assay to screen for novel proteins necessary for Tra2-dependent repression of splicing. This approach identified Half pint, also known as Puf68, as a co-repressor required for Tra2-mediated autoregulation of the M1 intron. In vivo, Half pint is required for Tra2-dependent repression of M1 splicing but is not necessary for Tra2-dependent activation of doublesex splicing. Further experiments indicate that the effect of Hfp is sequence-specific and that it associates with these target transcripts in cells. Importantly, known M1 splicing regulatory elements are sufficient to sensitize a heterologous intron to Hfp regulation. Two alternative proteins deriving from Hfp transcripts, Hfp68, and Hfp58, were found to be expressed in vivo but differed dramatically in their effect on M1 splicing. Comparison of the cellular localization of these forms in S2 cells revealed that Hfp68 is predominantly localized to the nucleus while Hfp58 is distributed across both the nucleus and cytoplasm. This accords with their observed effects on splicing and suggests that differential compartmentalization may contribute to the specificity of these isoforms. Together, these studies reveal a function for Half pint in splicing repression and demonstrate it to be specifically required for Tra2-dependent intron inclusion.
Doublesex
Minigene
Splicing factor
SR protein
Exonic splicing enhancer
Protein splicing
Spliceosome
Cite
Citations (7)
Studies of mammalian splicing factors are often focused on small nuclear ribonucleoproteins or regulatory RNA-binding proteins, such as hnRNP (heterogeneous nuclear ribonucleoprotein) and SR proteins (serine/arginine-rich proteins); however, much less is known about the contribution of DExD/H-box proteins or RNA helicases in mammalian pre-mRNA splicing. The human DEAH-box protein DHX16 [also known as DBP2 (DEAD-box protein 2)], is homologous with Caenorhabditis elegans Mog-4, Schizosaccharomyces pombe Prp8 and Saccharomyces cerevisiae Prp2. In the present study, we show that DHX16 is required for pre-mRNA splicing after the formation of a pre-catalytic spliceosome. We found that anti-DHX16 antiserum inhibited the splicing reaction in vitro and the antibody immunoprecipitated pre-mRNA, splicing intermediates and spliceosomal small nuclear RNAs. Cells that expressed DHX16 that had a mutation in the helicase domain accumulated unspliced intron-containing minigene transcripts. Nuclear extracts isolated from the dominant-negative DHX16-G724N-expressing cells formed splicing complex B, but were impaired in splicing. Adding extracts containing DHX16-G724N or DHX16-S552L mutant proteins to HeLa cell nuclear extracts resulted in reduced splicing, indicating that the mutant protein directly inhibited splicing in vitro. Therefore our results show that DHX16 is needed for human pre-mRNA splicing at a step analogous to that mediated by the S. cerevisiae spliceosomal ATPase Prp2.
Protein splicing
Spliceosome
Heterogeneous ribonucleoprotein particle
Minigene
Exonic splicing enhancer
SR protein
Small nuclear ribonucleoprotein
RNA Helicase A
Heterogeneous nuclear ribonucleoprotein
Splicing factor
Polypyrimidine tract
Cite
Citations (27)
The SR proteins constitute a family of splicing factors, highly conserved in metazoans, that contain one or two amino-terminal RNA-binding domains (RBDs) and a region enriched in arginine/serine repeats (RS domain) at the carboxyl terminus. Previous studies have shown that SR proteins possess distinct RNA-binding specificities that likely contribute to their unique functions, but it is unclear whether RS domains have specific roles in vivo. Here, we used a genetic system developed in the chicken B cell line DT40 to address this question. Expression of chimeric proteins generated by fusion of the RS domains of heterologous SR proteins, or a human TRA-2 protein, with the RBDs of ASF/SF2 allowed cell growth following genetic inactivation of endogenous ASF/SF2, indicating that RS domains are interchangeable for all functions required to maintain cell viability. However, a chimera containing the RS domain from a related splicing factor, U2AF 65 , could not rescue viability and was inactive in in vitro splicing assays, suggesting that this domain performs a distinct function. We also used the DT40 system to show that depletion of ASF/SF2 affects splicing of specific transcripts in vivo. Although splicing of several simple constitutive introns was not significantly affected, the alternative splicing patterns of two model pre-mRNAs switched in a manner consistent with predictions from previous studies. Unexpectedly, ASF/SF2 depletion resulted in a substantial increase in splicing of an HIV-1 tat pre-mRNA substrate, indicating that ASF/SF2 can repress tat splicing in vivo. These results provide the first demonstration that an SR protein can influence splicing of specific pre-mRNAs in vivo.
SR protein
Protein splicing
Splicing factor
Exonic splicing enhancer
Minigene
Heterogeneous ribonucleoprotein particle
Cite
Citations (100)
Two distinct functions have been proposed for the serine–arginine (SR)-rich family of splicing factors. First, SR proteins are essential splicing factors and are thought to function by mediating protein–protein interactions within the intron during spliceosome assembly. Second, SR proteins bind to exonic enhancer sequences and recruit spliceosome components to adjacent introns. The latter activity is required for splice-site recognition and alternative splicing. Until now it has not been possible to determine whether the requirement for SR proteins in the basic splicing reaction is a secondary consequence of their exon-dependent recruitment function. Here we show that RNA substrates containing only 1 nt of exon sequence can undergo the first step of the splicing reaction in vitro and that this activity requires SR proteins. Thus, we provide direct evidence that SR proteins have both exon-independent and exon-dependent functions in pre-mRNA splicing.
Exonic splicing enhancer
SR protein
Spliceosome
Splicing factor
Protein splicing
Polypyrimidine tract
Minigene
Cite
Citations (47)
SR protein
Spliceosome
Exonic splicing enhancer
Splicing factor
Protein splicing
Precursor mRNA
Cite
Citations (273)
Spliceosome
SR protein
Protein splicing
Exonic splicing enhancer
Dephosphorylation
Splicing factor
Minigene
Cite
Citations (221)
Exonic splicing enhancers (ESEs) activate pre-mRNA splicing by promoting the use of the flanking splice sites. They are recognized by members of the serine/arginine-rich (SR) family of proteins, such as splicing factor 2/alternative splicing factor (SF2/ASF), which recruit basal splicing factors to form the initial complexes during spliceosome assembly. The in vitro splicing kinetics of an ESE-dependent IgM pre-mRNA suggested that an SF2/ASF-specific ESE has additional functions later in the splicing reaction, after the completion of the first catalytic step. A bimolecular exon ligation assay, which physically uncouples the first and second catalytic steps of splicing in a trans-splicing reaction, was adapted to test the function of the ESE after the first step. A 3′ exon containing the SF2/ASF-specific ESE underwent bimolecular exon ligation, whereas 3′ exons without the ESE or with control sequences did not. The ESE-dependent trans-splicing reaction occurred after inactivation of U1 or U2 small nuclear ribonucleoprotein particles, compatible with a functional assay for events after the first step of splicing. The ESE-dependent step appears to take place before the ATP-independent part of the second catalytic step. Bimolecular exon ligation also occurred in an S100 cytosolic extract, requiring both the SF2/ASF-dependent ESE and complementation with SF2/ASF. These data suggest that some ESEs can act late in the splicing reaction, together with appropriate SR proteins, to enhance the second catalytic step of splicing.
Exonic splicing enhancer
Protein splicing
Splicing factor
SR protein
Minigene
Small nuclear ribonucleoprotein
Spliceosome
Polypyrimidine tract
Cite
Citations (59)
The human IGF-I gene has six exons, four of which are alternatively spliced. Variations in splicing involving exon 5 may occur, depending on the tissue type and hormonal environment. To study the regulation of splicing to IGF-I exon 5, we established an in vitro splicing assay, using a model pre-mRNA containing IGF-I exons 4 and 5 and part of the intervening intron. Using a series of deletion mutants, we identified an 18-nucleotide purine-rich splicing enhancer in exon 5 that increases the splicing efficiency of the upstream intron from 6 to 35%. We show that the serine-arginine protein splicing factor-2/alternative splicing factor specifically promotes splicing in cultured cells and in vitro and is recruited to the spliceosome in an enhancer-specific manner. Our findings are consistent with a role for splicing factor-2/alternative splicing factor in the regulation of splicing of IGF-I alternative exon 5 via a purine-rich exonic splicing enhancer.
Exonic splicing enhancer
Minigene
Splicing factor
SR protein
Polypyrimidine tract
Protein splicing
Spliceosome
Exon skipping
Cite
Citations (46)
Group II intron
Minor spliceosome
Cite
Citations (6)
Exonic splicing enhancer
Minigene
Splicing factor
SR protein
Heterogeneous nuclear ribonucleoprotein
Precursor mRNA
Protein splicing
Cite
Citations (23)