Allelic and ectopic recombination between Ty elements in yeast.
125
Citation
18
Reference
10
Related Paper
Citation Trend
Abstract:
Abstract Allelic and nonallelic (ectopic) recombination events were analyzed in a set of isogenic strains that carry marked Ty elements. We found that allelic recombination between Ty elements occurred at normal frequencies both in meiosis and mitosis. The marked Ty elements were involved in a large variety of different types of ectopic recombination and this variety was greater in mitosis than in meiosis. Allelic and ectopic recombination events occurred at similar frequencies in mitosis, but allelic recombination predominated in meiosis. Some of the types of ectopic mitotic recombination indicated the common occurrence of concerted recombination events. The length of homology represented by a delta element (330 bp) seemed to be sufficient for some types of mitotic and meiotic recombination.Keywords:
Mitotic crossover
Ectopic recombination
Chromosomal crossover
Non-allelic homologous recombination
Recombination during meiosis in the form of crossover events promotes the segregation of homologous chromosomes by providing the only physical linkage between these chromosomes. Recombination occurs not only between allelic sites but also between non-allelic (ectopic) sites. Ectopic recombination is often suppressed to prevent non-productive linkages. In this study, we examined the effects of various mutations in genes involved in meiotic recombination on ectopic recombination during meiosis. RAD24, a DNA damage checkpoint clamp-loader gene, suppressed ectopic recombination in wild type in the same pathway as RAD51. In the absence of RAD24, a meiosis-specific recA homolog, DMC1, suppressed the recombination. Homology search and strand exchange in ectopic recombination occurred when either the RAD51 or the DMC1 recA homolog was absent, but was promoted by RAD52. Unexpectedly, the zip1 mutant, which is defective in chromosome synapsis, showed a decrease, rather than an increase, in ectopic recombination. Our results provide evidence for two types of ectopic recombination: one that occurs in wild-type cells and a second that occurs predominantly when the checkpoint pathway is inactivated.
Ectopic recombination
Synapsis
Mitotic crossover
Non-allelic homologous recombination
FLP-FRT recombination
RAD52
Ectopic expression
Chromosomal crossover
Synaptonemal complex
Non-homologous end joining
Cite
Citations (22)
Abstract Intrachromosomal recombination within heteroallelic duplications located on chromosomes III and XV of Saccharomyces cerevisiae has been examined. Both possible orientations of alleles have been used in each duplication. Three recombinant classes, gene conversions, pop-outs and triplications, were recovered. Some of the recombinant classes were not anticipated from the particular allele orientation of the duplication. Recovery of these unexpected recombinants requires the RAD1 gene. These studies show that RAD1 has a role in recombination between repeated sequences, and that the recombination event is a gene conversion associated with a crossover. These events appear to involve very localized conversion of a heteroduplex region and are distinct from RAD52 mediated gene conversion events. Evidence is also presented to suggest that most recombination events between direct repeats are intrachromatid, not between sister chromatids.
Gene conversion
Mitotic crossover
Heteroduplex
FLP-FRT recombination
Non-allelic homologous recombination
Chromosomal crossover
Ectopic recombination
RAD52
Cite
Citations (135)
Mitotic crossover
RAD52
Ectopic recombination
FLP-FRT recombination
Non-allelic homologous recombination
Chromosomal crossover
Cite
Citations (7)
In Saccharomyces cerevisiae meiosis, recombination occurs frequently between sequences at the same location on homologs (allelic recombination) and can take place between dispersed homologous sequences (ectopic recombination). Ectopic recombination occurs less often than does allelic, especially when homologous sequences are on heterologous chromosomes. To account for this, it has been suggested that homolog pairing (homolog colocalization and alignment) either promotes allelic recombination or restricts ectopic recombination. The latter suggestion was tested by examining ectopic recombination in two cases where normal interhomolog relationships are disrupted. In the first case, one member of a homolog pair was replaced by a homoeologous (related but not identical) chromosome that has diverged sufficiently to prevent allelic recombination. In the second case, ndj1 mutants were used to delay homolog pairing and synapsis. Both circumstances resulted in a substantial increase in the frequency of ectopic recombination between arg4 -containing plasmid inserts located on heterologous chromosomes. These findings suggest that, during normal yeast meiosis, progressive homolog colocalization, alignment, synapsis, and allelic recombination restrict the ability of ectopically located sequences to find each other and recombine. In the absence of such restrictions, the meiotic homology search may encompass the entire genome.
Synapsis
Ectopic recombination
Non-allelic homologous recombination
FLP-FRT recombination
Chromosomal crossover
Synaptonemal complex
Mitotic crossover
Cite
Citations (85)
Non-allelic homologous recombination
Ectopic recombination
FLP-FRT recombination
Mitotic crossover
Transposition (logic)
Non-homologous end joining
Gene conversion
DNA Transposable Elements
Site-specific recombination
Cite
Citations (35)
Abstract We have examined the role that genomic location plays in mitotic intragenic recombination. Mutant alleles of the LEU2 gene were inserted at five locations in the yeast genome. Diploid and haploid strains containing various combinations of these inserts were used to examine both allelic recombination (between sequences at the same position on parental homologs) and ectopic recombination (between sequences at nonallelic locations). Chromosomal location had little effect on mitotic allelic recombination. The rate of recombination to LEU2 at five different loci varied less than threefold. This finding contrasts with previous observations of strong position effects in meiosis; frequencies of meiotic recombination at the same five loci differ by about a factor of forty. Mitotic recombination between dispersed copies of leu2 displayed strong position effects. Copies of leu2 located approximately 20 kb apart on the same chromosome recombined at rates 6-13-fold higher than those observed for allelic copies of leu2. leu2 sequences located on nonhomologous chromosomes or at distant loci on the same chromosome recombined at rates similar to those observed for allelic copies. We suggest that, during mitosis, parental homologs interact with each other no more frequently than do nonhomologous chromosomes.
Mitotic crossover
Ectopic recombination
Non-allelic homologous recombination
Gene conversion
Chromosomal crossover
Cite
Citations (123)
Abstract Allelic and nonallelic (ectopic) recombination events were analyzed in a set of isogenic strains that carry marked Ty elements. We found that allelic recombination between Ty elements occurred at normal frequencies both in meiosis and mitosis. The marked Ty elements were involved in a large variety of different types of ectopic recombination and this variety was greater in mitosis than in meiosis. Allelic and ectopic recombination events occurred at similar frequencies in mitosis, but allelic recombination predominated in meiosis. Some of the types of ectopic mitotic recombination indicated the common occurrence of concerted recombination events. The length of homology represented by a delta element (330 bp) seemed to be sufficient for some types of mitotic and meiotic recombination.
Mitotic crossover
Ectopic recombination
Chromosomal crossover
Non-allelic homologous recombination
Cite
Citations (125)
Abstract Chromosomal rearrangements can result from crossing over during ectopic homologous recombination between dispersed repetitive DNA. We have previously shown that meiotic ectopic recombination between artificially dispersed ade6 heteroalleles in the fission yeast Schizosaccharomyces pombe frequently results in chromosomal rearrangements. The same recombination substrates have been studied in mitotic recombination. Ectopic recombination rates in haploids were ∼1-4 × 10-6 recombinants per cell generation, similar to allelic recombination rates in diploids. In contrast, ectopic recombination rates in heterozygous diploids were 2.5-70 times lower than allelic recombination or ectopic recombination in haploids. These results suggest that diploid-specific factors inhibit ectopic recombination. Very few crossovers occurred in ade6 mitotic recombination, either allelic or ectopic. Allelic intragenic recombination was associated with 2% crossing over, and ectopic recombination between multiple different pairing partners showed 1-7% crossing over. These results contrast sharply with the 35-65% crossovers associated with meiotic ade6 recombination and suggest either differential control of resolution of recombination intermediates or alternative pathways of recombination in mitosis and meiosis.
Ectopic recombination
Mitotic crossover
FLP-FRT recombination
Non-allelic homologous recombination
Chromosomal crossover
Cite
Citations (27)
Abstract Homologous recombination is increased during meiosis between DNA sequences at the same chromosomal position (allelic recombination) and at different chromosomal positions (ectopic recombination). Recombination hotspots are important elements in controlling meiotic allelic recombination. We have used artificially dispersed copies of the ade6 gene in Schizosaccharomyces pombe to study hotspot activity in meiotic ectopic recombination. Ectopic recombination was reduced 10–1000-fold relative to allelic recombination, and was similar to the low frequency of ectopic recombination between naturally repeated sequences in S. pombe. The M26 hotspot was active in ectopic recombination in some, but not all, integration sites, with the same pattern of activity and inactivity in ectopic and allelic recombination. Crossing over in ectopic recombination, resulting in chromosomal rearrangements, was associated with 35–60% of recombination events and was stimulated 12-fold by M26. These results suggest overlap in the mechanisms of ectopic and allelic recombination and indicate that hotspots can stimulate chromosomal rearrangements.
Ectopic recombination
Mitotic crossover
FLP-FRT recombination
Non-allelic homologous recombination
Ectopic expression
Cite
Citations (27)
Non-allelic homologous recombination
Ectopic recombination
Mitotic crossover
FLP-FRT recombination
Aleurone
Cite
Citations (3)