logo
    6
    Citation
    12
    Reference
    10
    Related Paper
    Citation Trend
    The interaction between liquid and solid metals where the liquid-solid interface contains three grain boundary lines which meet in triple junction point is considered. The assumption that the liquid grooves may be formed not only along grain boundaries but along triple junctions is presented. The variation of Gibbs energy during the formation of triangle pyramidal groove along triple junction is determined. The dependence of Gibbs energy variation from groove dimensions shows that the wetting of triple junctions occurs by lower temperatures than the wetting of grain boundaries. This result allows to take into account the existence of grain size effect on the liquid phase penetration depth into the polycrystalline sample. The proposed mechanism of wetting in polycrystalline metal contains two stages: the outstrip melt penetration along triple junctions and the liquid grooving on grain boundaries forming the triple junctions. One of the processes – triple junction diffusion or liquid diffusion – may control the wetting in the polycrystalline sample.
    Triple junction
    Triple point
    Penetration (warfare)
    Triple junction
    Triple point
    Transition point
    Dihedral angle
    Citations (6)
    Abstract Triple lines are the lines of intersection of three interfaces, either external interfaces or internal interfaces of a bulk material. They have been recognized as important microstructural features with specific kinetic and thermodynamic properties. Utilizing atomic force microscopy, the line tensions, i.e. the energy of grain boundary-free surface triple lines and grain boundary triple junctions for different crystallographic systems in copper were determined. The line tension of grain boundary triple junctions in copper was found to be positive and of the order of 10 −9 J m −1 . Junctions including low energy boundaries, twin boundaries and low angle boundaries revealed a substantially lower line tension than triple junctions comprised only of random high angle boundaries. A simple model based on a constant grain boundary energy density is proposed to account for the orientation dependence of triple line energy.
    Triple junction
    Tension (geology)
    Grain boundary strengthening
    Line (geometry)
    Triple point
    Citations (6)
    At the triple point of a repulsive screened Coulomb system, a face-centered-cubic (fcc) crystal, a body-centered-cubic (bcc) crystal and a fluid phase coexist. At their intersection, these three phases form a liquid groove, the triple junction. Using confocal microscopy, we resolve the triple junction on a single particle level in a model system of charged PMMA colloids in a nonpolar solvent. The groove is found to be extremely deep and the incommensurate solid-solid interface to be very broad. Thermal fluctuations hence appear to dominate the solid-solid interface. This indicates a very low interfacial energy. The fcc-bcc interfacial energy is quantitatively determined based on Young's equation and, indeed, it is only about 1.3 times higher than the fcc-fluid interfacial energy close to the triple point.
    Triple junction
    Triple point
    Particle (ecology)
    Crystal (programming language)
    Thermal fluctuations