Optimization of the particle density to maximize the SERS enhancement factor of periodic plasmonic nanostructure array

2016 
Low-cost surface-enhanced Raman scattering (SERS) substrate with the largest possible enhancement factor is highly desirable for SERS-based sensing applications. In this work, we systematically investigated how the density of plasmonic nanostructures affects the intensity of SERS signal. By directly depositing of metallic layer on electron-beam-lithography defined dielectric nanoposts, plasmonic structures array with different densities were reliably fabricated for SERS measurements. Two main experimental phenomena were obtained: (1) the SERS intensity did not increase monotonically when increasing the density of plasmonic structures, and (2) these ultra-dense plasmonic structures resulted in the maximal SERS intensity. These results could be well explained based on finite-difference time domain (FDTD) simulations and provide robust experimental evidences to guide the design of the best possible SERS substrate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    14
    Citations
    NaN
    KQI
    []