High internal phase emulsions stabilized by native and heat-treated lactoferrin-carboxymethyl chitosan complexes: Comparison of molecular and granular emulsifiers.

2021 
Abstract While the high internal phase emulsions (HIPEs) have been formed by food-grade biopolymers and heated granules have been widely reported, it is not known which components are more effective. In this work, we first used heat-treated lactoferrin (LF)-carboxymethyl chitosan (CMCTS) granules and native LF-CMCTS physical mixtures as emulsifiers to form HIPEs. The results showed that the interfacial behavior and emulsifying properties of the two complexes were controlled by the ratio of LF-CMCTS and the optimal ratio of LF to CMCTS was 1:1. Heated LF-CMCTS granules anchored to the water-oil interface and formed an elastic shell to stabilize HIPEs, while unheated LF-CMCTS complexes formed a thick film layer to stabilize HIPEs. Both HIPEs could act as delivery systems loaded with curcumin, and they showed better protection of curcumin than Tween-80 under light. This study provides a new basis for the design of LF-based HIPEs systems loaded with lipophilic food functional ingredients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    1
    Citations
    NaN
    KQI
    []