Constructed Single-Crystal Rutile TiO2 Cluster and Plasmon Synergistic Effect for Dye-Sensitized Solar Cells

2015 
Abstract We demonstrate a method for incorporating plasmon metallic nanoparticles in hierarchical rutile TiO 2 clusters (RTC) assembled from single-crystal nanospindles. The RTC could efficiently improve the diffusion of the photoelectrons, which can be ascribed to the improvement of the connectivity by bridging the neighbouring microflowers through the single-crystal nanospindles. But not all the nanospindles are tightly interconnected, hence organic colloid has been prepared for post-treatment of the device based on RTC by the generation of TiO 2 nanoparticles. When added into Au nanoparticles, localized electric fields can be produced, because Au can excite dye molecules more intensively than incident far-field light. The surface plasmon synergistic effect had been investigated by Uv-vis absorption spectrum of Au@ organic colloid and the relative change of the IPCE. As a result, the cell based on RTC exhibits an overall conversion efficiency of 7.68%, indicating a 17% promotion compared with that derived from commercial P25 (6.58%) which could be ascribed to faster electron transfer of single-crystal nanospindles. With the Au nanoparticles incorporation in RTC, the device achieves a conversion efficiency of 9.15%, resulting in a 11% increase compared to the RTC device post-treated by organic colloid without Au nanoparticles (8.24%), which is attributed to the surface plasmon synergistic of Au nanoparticles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    7
    Citations
    NaN
    KQI
    []