Enforced Tubular Assembly of Electronically Different Hexakis(m-Phenylene Ethynylene) Macrocycles: Persistent Columnar Stacking Driven by Multiple Hydrogen-Bonding Interactions

2017 
Hexakis(m-phenylene ethynylene) (m-PE) macrocycles 1–4, sharing the same hydrogen-bonding side chains but having backbones of different electronic properties, are designed to probe the effectiveness of multiple H-bonding interactions in enforcing columnar assemblies. 1H NMR, absorption, fluorescence, and circular dichroism (CD) spectroscopy indicate that, compared with analogous macrocycles that self-associate based on aromatic stacking which is highly sensitive to the electronic nature of the macrocyclic backbones, macrocycles 1–4 all exhibit strong aggregation down to the micromolar (μM) concentrations in nonpolar solvents. Increasing solvent polarity quickly weakens aggregation. In THF and DMF, the macrocycles exist as free molecules. The observed solvent effects, along with the behavior of 5-F6 that cannot self-associate via H-bonding, confirm that H-bonding plays the dominating role in driving the self-association of 1–4. The backbone electronic nature does not change the self-assembling pattern comm...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    83
    References
    21
    Citations
    NaN
    KQI
    []