language-icon Old Web
English
Sign In

Solvent effects

In chemistry, solvent effects are the influence of a solvent on chemical reactivity or molecular associations. Solvents can have an effect on solubility, stability and reaction rates and choosing the appropriate solvent allows for thermodynamic and kinetic control over a chemical reaction.A solute dissolves in a solvent when it forms favorable interactions with the solvent. This dissolving process all depends upon the free energy change of both solute and solvent. The free energy of solvation is a combination of several factors.Different solvents can affect the equilibrium constant of a reaction by differential stabilization of the reactant or product. The equilibrium is shifted in the direction of the substance that is preferentially stabilized. Stabilization of the reactant or product can occur through any of the different non-covalent interactions with the solvent such as H-bonding, dipole-dipole interactions, van der waals interactions etc.Often, reactivity and reaction mechanisms are pictured as the behavior of isolated molecules in which the solvent is treated as a passive support. However, solvents can actually influence reaction rates and order of a chemical reaction.The effect of solvent on elimination and nucleophillic substitution reactions was originally studied by British chemists Edward D. Hughes and Christopher Kelk Ingold. Using a simple solvation model that considered only pure electrostatic interactions between ions or dipolar molecules and solvents in initial and transition states, all nucleophilic and elimination reactions were organized into different charge types (neutral, positively charged, or negatively charged).Hughes and Ingold then made certain assumptions that could be made about the extent of solvation to be expected in these situations:The solvent used in substitution reactions inherently determines the nucleophilicity of the nucleophile; this fact has become increasingly more apparent as more reactions are performed in the gas phase. As such, solvent conditions significantly affect the performance of a reaction with certain solvent conditions favoring one reaction mechanism over another. For SN1 reactions the solvent's ability to stabilize the intermediate carbocation is of direct importance to its viability as a suitable solvent. The ability of polar solvents to increase the rate of SN1 reactions is a result of the polar solvent's solvating the reactant intermediate species, i.e., the carbocation, thereby decreasing the intermediate energy relative to the starting material. The following table shows the relative solvolysis rates of tert-butyl chloride with acetic acid (CH3CO2H), methanol (CH3OH), and water (H2O).

[ "Solvent", "Polarizable continuum model", "Theta solvent", "Neutral good", "Donor number" ]
Parent Topic
Child Topic
    No Parent Topic