MoO x as an Efficient and Stable Back Contact Buffer for Thin Film CdTe Solar Cells

2012 
A low-resistance back contact for n-CdS/p-CdTe solar cells has been developed, which utilizes a thermally evaporated MoO x thin film as the buffer layer between the p-CdTe and the back electrode. The low-resistance behavior of back contact is attributed to the high work function of MoO x , which reportedly is as high as 6.8 eV, and thus adequately matches that of p-CdTe. With MoO x as the buffer, a variety of common metals, even those with a low work function such as Al, have been found to be useful as the electrode in forming the back contact. Other advantages of the MoO x buffer include dry application by vacuum deposition, and thus it is particularly suitable for the fabrication of ultra-thin CdTe solar cells without introducing additional shorting defects. Surface cleaning of CdTe films prior to MoO x deposition has also been studied. The cell stability has been evaluated through thermal annealing tests. Thermal degradation has been explained in terms of oxidation of the metal electrodes. CdTe cells with high efficiency and good stability have been demonstrated with MoO x as the back contact buffer and Ni as the electrode.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    2
    Citations
    NaN
    KQI
    []