Cadmium telluride (CdTe) photovoltaics describes a photovoltaic (PV) technology that is based on the use of cadmium telluride, a thin semiconductor layer designed to absorb and convert sunlight into electricity. Cadmium telluride PV is the only thin film technology with lower costs than conventional solar cells made of crystalline silicon in multi-kilowatt systems. Cadmium telluride (CdTe) photovoltaics describes a photovoltaic (PV) technology that is based on the use of cadmium telluride, a thin semiconductor layer designed to absorb and convert sunlight into electricity. Cadmium telluride PV is the only thin film technology with lower costs than conventional solar cells made of crystalline silicon in multi-kilowatt systems. On a lifecycle basis, CdTe PV has the smallest carbon footprint, lowest water use and shortest energy payback time of any current photo voltaic technology. CdTe's energy payback time of less than a year allows for faster carbon reductions without short-term energy deficits. The toxicity of cadmium is an environmental concern mitigated by the recycling of CdTe modules at the end of their life time, though there are still uncertainties and the public opinion is skeptical towards this technology. The usage of rare materials may also become a limiting factor to the industrial scalability of CdTe technology in the mid-term future. The abundance of tellurium—of which telluride is the anionic form—is comparable to that of platinum in the earth's crust and contributes significantly to the module's cost. CdTe photovoltaics are used in some of the world's largest photovoltaic power stations, such as the Topaz Solar Farm. With a share of 5.1% of worldwide PV production, CdTe technology accounted for more than half of the thin film market in 2013. A prominent manufacturer of CdTe thin film technology is the company First Solar, based in Tempe, Arizona. The dominant PV technology has always been based on crystalline silicon wafers. Thin films and concentrators were early attempts to lower costs. Thin films are based on using thinner semiconductor layers to absorb and convert sunlight. Concentrators lower the number of panels by using lenses or mirrors to put more sunlight on each panel. The first thin film technology to be extensively developed was amorphous silicon. However, this technology suffers from low efficiencies and slow deposition rates (leading to high capital costs). Instead, the PV market reached some 4 gigawatts in 2007 with crystalline silicon comprising almost 90% of sales. The same source estimated that about 3 gigawatts were installed in 2007. During this period cadmium telluride and copper indium diselenide or CIS-alloys remained under development. The latter is beginning to be produced in volumes of 1–30 megawatts per year due to very high, small-area cell efficiencies approaching 20% in the laboratory. CdTe cell efficiency is approaching 20% in the laboratory with a record of 22.1% as of 2016. Research in CdTe dates back to the 1950s, because its band gap (~1.5 eV) is almost a perfect match to the distribution of photons in the solar spectrum in terms of conversion to electricity. A simple heterojunction design evolved in which p-type CdTe was matched with n-type cadmium sulfide (CdS). The cell was completed by adding top and bottom contacts. Early leaders in CdS/CdTe cell efficiencies were GE in the 1960s, and then Kodak, Monosolar, Matsushita, and AMETEK. By 1981, Kodak used close spaced sublimation (CSS) and made the first 10% cells and first multi-cell devices (12 cells, 8% efficiency, 30 cm2). Monosolar and AMETEK used electrodeposition, a popular early method. Matsushita started with screen printing but shifted in the 1990s to CSS. Cells of about 10% sunlight-to-electricity efficiency were produced by the early 1980s at Kodak, Matsushita, Monosolar and AMETEK.