Bottom up engineering of single crystal diamond membranes with germanium vacancy color centers

2019 
Color centers in diamond have garnered significant attention for applications in integrated quantum photonics. The availability of thin (∼ hundred of nanometers) diamond membranes is paramount to achieve this goal. In this paper, we describe in detail a robust, reproducible and cost effective fabrication method that enables engineering high quality thin diamond membranes with uniform distribution of germanium vacancies employing microwave plasma chemical vapor deposition. We use a combination of different germanium precursors for homogeneous doping of the membranes to increase the probability of germanium incorporation into the diamond lattice. Our fabrication methodology can be further extended to implementation of other color centers in thin diamond membranes and be used for engineering quantum photonic devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    8
    Citations
    NaN
    KQI
    []