language-icon Old Web
English
Sign In

Diamond cubic

The diamond cubic crystal structure is a repeating pattern of 8 atoms that certain materials may adopt as they solidify. While the first known example was diamond, other elements in group 14 also adopt this structure, including α-tin, the semiconductors silicon and germanium, and silicon/germanium alloys in any proportion. The diamond cubic crystal structure is a repeating pattern of 8 atoms that certain materials may adopt as they solidify. While the first known example was diamond, other elements in group 14 also adopt this structure, including α-tin, the semiconductors silicon and germanium, and silicon/germanium alloys in any proportion. Diamond's cubic structure is in the Fd3m space group, which follows the face-centered cubic Bravais lattice. The lattice describes the repeat pattern; for diamond cubic crystals this lattice is 'decorated' with a motif of two tetrahedrally bonded atoms in each primitive cell, separated by 1/4 of the width of the unit cell in each dimension. The diamond lattice can be viewed as a pair of intersecting face-centered cubic lattices, with each separated by 1/4 of the width of the unit cell in each dimension. Many compound semiconductors such as gallium arsenide, β-silicon carbide, and indium antimonide adopt the analogous zincblende structure, where each atom has nearest neighbors of an unlike element. Zincblende's space group is F43m, but many of its structural properties are quite similar to the diamond structure. The atomic packing factor of the diamond cubic structure (the proportion of space that would be filled by spheres that are centered on the vertices of the structure and are as large as possible without overlapping) is π√3/16 ≈ 0.34, significantly smaller (indicating a less dense structure) than the packing factors for the face-centered and body-centered cubic lattices. Zincblende structures have higher packing factors than 0.34 depending on the relative sizes of their two component atoms. The first-, second-, third-, fourth- and fifth-nearest-neighbor distances in units of the cubic lattice constant are √3/4, √2/2, √11/4, 1 and √19/4, respectively. Mathematically, the points of the diamond cubic structure can be given coordinates as a subset of a three-dimensional integer lattice by using a cubic unit cell four units across. With these coordinates, the points of the structure have coordinates (x, y, z) satisfying the equations

[ "Carbon", "Diamond" ]
Parent Topic
Child Topic
    No Parent Topic