Pulmonary microvascular and macrovascular endothelial cells: differential regulation of Ca2+and permeability

1998 
Cytosolic Ca2+ concentration ([Ca2+]i) plays an important role in control of pulmonary vascular endothelial cell (ECs) barrier function. In this study, we investigated whether thapsigargin- and ionomycin-induced changes in cytosolic Ca2+ induce permeability in rat pulmonary microvascular (RPMV) versus macrovascular (RPA) ECs. In Transwell cultures, RPMVECs formed a tighter, more restrictive barrier than RPAECs to 12,000-, 72,000-, and 150,000-molecular-weight FITC-labeled dextrans. Thapsigargin (1 μM) produced higher [Ca2+]ilevels in RPAECs than in RPMVECs and increased permeability in RPAEC but not in RPMVEC monolayers. Due to the attenuated [Ca2+]iresponse in RPMVECs, we investigated whether reduced activation of store-operated Ca2+ entry was responsible for the insensitivity to thapsigargin. Addition of the drug in media containing 100 nM extracellular Ca2+ followed by readdition media with 2 mM extracellular Ca2+increased RPMVEC [Ca2+]ito a level higher than that in RPAECs. Under these conditions, RPMVEC permeability was not increased, suggesting that [Ca2+]iin RPMVECs does not initiate barrier disruption. Also, ionomycin (1.4 μM) did not alter RPMVEC permeability, but the protein phosphatase inhibitor calyculin A (100 nM) induced permeability in RPMVECs. These data indicate that, whereas increased [Ca2+]ipromotes permeability in RPAECs, it is not sufficient in RPMVECs, which show an apparent uncoupling of [Ca2+]isignaling pathways or dominant Ca2+-independent mechanisms from controlling cellular gap formation and permeability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    150
    Citations
    NaN
    KQI
    []