Molecular Model of a Soluble Guanylyl Cyclase Fragment Determined by Small-Angle X-ray Scattering and Chemical Cross-Linking

2013 
Soluble guanylyl/guanylate cyclase (sGC) converts GTP to cGMP after binding nitric oxide, leading to smooth muscle relaxation and vasodilation. Impaired sGC activity is common in cardiovascular disease, and sGC stimulatory compounds are vigorously sought. sGC is a 150 kDa heterodimeric protein with two H-NOX domains (one with heme, one without), two PAS domains, a coiled-coil domain, and two cyclase domains. Binding of NO to the sGC heme leads to proximal histidine release and stimulation of catalytic activity. To begin to understand how binding leads to activation, we examined truncated sGC proteins from Manduca sexta (tobacco hornworm) that bind NO, CO, and stimulatory compound YC-1 but lack the cyclase domains. We determined the overall shape of truncated M. sexta sGC using analytical ultracentrifugation and small-angle X-ray scattering (SAXS), revealing an elongated molecule with dimensions of 115 A × 90 A × 75 A. Binding of NO, CO, or YC-1 had little effect on shape. Using chemical cross-linking and ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    53
    Citations
    NaN
    KQI
    []