Chemically engineered multiferroic morphotropic phase boundary in BiFeO3-based single phase multiferroics

2019 
As the reach points of different phases with complex structural features, a morphotropic phase boundary (MPB) in ferroelectric and ferromagnetic solid solutions can significantly enhance the piezoelectric performance and magnetostrictive response, respectively. Recently, the phase-change functional responses related to the multiferroic MPB are proposed to be a promising way to enhance the magnetoelectric coupling in BiFeO3-based single phase multiferroics. In this work, we verify the tunable magnetic ordering and the construction of the multiferroic MPB by engineering the chemical concentrations of the ferroelectric/non-magnetic PbTiO3 end in the (1 – x)Bi0.9Dy0.1FeO3-xPbTiO3 binary solid solution ceramic system. Based on the results obtained in this work and reported in the literature, the structure-ferroic properties phase diagram of the BiFeO3-DyFeO3-PbTiO3 ternary system is established, where a compositional region with coexisting ferroelectric polarization and ferromagnetic moment is found. More impo...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    8
    Citations
    NaN
    KQI
    []