Observations of an atmospheric chemical equator and its implications for the tropical warm pool region

2008 
This paper reports observations of a tropospheric chemical equator in the Western Pacific region during the Austral monsoon season, separating the polluted Northern Hemisphere from the cleaner Southern Hemisphere. Measurements of carbon monoxide, ozone, aerosol size/composition, and non-methane hydrocarbons were made from aircraft, flying north from Darwin, Australia as part of the Aerosol and Chemical Transport In tropical conVEction (ACTIVE) campaign. A chemical equator, defined as a sharp gradient in the chemical background, was found not to be coincident with the Intertropical Convergence Zone during this period. A pronounced interfacial region was identified between 8.5 and 10 degrees S, where tracer mixing ratios increased rapidly within the boundary layer, e.g. CO from 40 ppbv to 160 ppbv within 0.5 degrees latitude (50 km), with inhibited inter-hemispheric mixing. These measurements are discussed in context using a combination of meteorological and Earth-observing satellite imagery, back trajectory analysis and chemical model data with the conclusion that air flowing into and subsequently uplifted by the active convection of the Tropical Warm Pool (TWP) region in the Western Pacific is likely to be highly polluted, and will perturb the composition of the Tropical Tropopause Layer. The main source of CO and other pollutants within the TWP region is expected to be biomass burning, with extensive fires in North Sumatra and Thailand during this period. The sharp gradient in composition at the chemical equator seen here results from extensive burning to the north, contrasting with pristine maritime air advected from the Southern Indian Ocean by a strong land-based cyclone over the Northern Territory of Australia.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    25
    Citations
    NaN
    KQI
    []