language-icon Old Web
English
Sign In

Monsoon

Monsoon (/mɒnˈsuːn/) is traditionally defined as a seasonal reversing wind accompanied by corresponding changes in precipitation, but is now used to describe seasonal changes in atmospheric circulation and precipitation associated with the asymmetric heating of land and sea. Usually, the term monsoon is used to refer to the rainy phase of a seasonally changing pattern, although technically there is also a dry phase. The term is sometimes incorrectly used for locally heavy but short-term rains, although these rains meet the dictionary definition of monsoon. The major monsoon systems of the world consist of the West African and Asia-Australian monsoons. The inclusion of the North and South American monsoons with incomplete wind reversal has been debated. The term was first used in English in British India and neighbouring countries to refer to the big seasonal winds blowing from the Bay of Bengal and Arabian Sea in the southwest bringing heavy rainfall to the area. The etymology of the word monsoon is not wholly certain. The English monsoon came from Portuguese monção, ultimately from Arabic mawsim (موسم 'season'), 'perhaps partly via early modern Dutch monson.' Strengthening of the Asian monsoon has been linked to the uplift of the Tibetan Plateau after the collision of the Indian sub-continent and Asia around 50 million years ago. Because of studies of records from the Arabian Sea and that of the wind-blown dust in the Loess Plateau of China, many geologists believe the monsoon first became strong around 8 million years ago. More recently, studies of plant fossils in China and new long-duration sediment records from the South China Sea led to a timing of the monsoon beginning 15–20 million years ago and linked to early Tibetan uplift. Testing of this hypothesis awaits deep ocean sampling by the Integrated Ocean Drilling Program. The monsoon has varied significantly in strength since this time, largely linked to global climate change, especially the cycle of the Pleistocene ice ages. A study of marine plankton suggested that the Indian Monsoon strengthened around 5 million years ago. Then, during ice periods, the sea level fell and the Indonesian Seaway closed. When this happened, cold waters in the Pacific were impeded from flowing into the Indian Ocean. It is believed that the resulting increase in sea surface temperatures in the Indian Ocean increased the intensity of monsoons. Five episodes during the Quaternary at 2.22 Ma (PL-1), 1.83 Ma (PL-2), 0.68 Ma (PL-3), 0.45 Ma (PL-4) and 0.04 Ma (PL-5) were identified which showed a weakening of Leeuwin Current (LC). The weakening of the LC would have an effect on the sea surface temperature (SST) field in the Indian Ocean, as the Indonesian through flow generally warms the Indian Ocean. Thus these five intervals could probably be those of considerable lowering of SST in the Indian Ocean and would have influenced Indian monsoon intensity. During the weak LC, there is the possibility of reduced intensity of the Indian winter monsoon and strong summer monsoon, because of change in the Indian Ocean dipole due to reduction in net heat input to the Indian Ocean through the Indonesian through flow. Thus a better understanding of the possible links between El Niño, Western Pacific Warm Pool, Indonesian Throughflow, wind pattern off western Australia, and ice volume expansion and contraction can be obtained by studying the behaviour of the LC during Quaternary at close stratigraphic intervals.

[ "Precipitation", "Climatology", "Oceanography", "Meteorology", "Indian Monsoon Current", "Aporosa yunnanensis", "monsoon circulation", "Siberian High", "Tropical monsoon climate" ]
Parent Topic
Child Topic
    No Parent Topic