A cotton NAC transcription factor GhirNAC2 plays positive roles in drought tolerance via regulating ABA biosynthesis

2020 
Abstract NAC protein is a large plant specific transcription factor family, which plays important roles in the response to abiotic stresses. However, the regulation mechanism of most NAC proteins in drought stress remains to be further uncovered. In this study, we elucidated the molecular functions of a NAC protein, GhirNAC2, in response to drought stress in cotton. GhirNAC2 was greatly induced by drought and phytohormone abscisic acid (ABA). Subcellular localization demonstrated that GhirNAC2 was located in the nucleus. Co-suppression of GhirNAC2 in cotton led to larger stomata aperture, elevated water loss and finally reduced transgenic plants tolerance to drought stress. Furthermore, the endogenous ABA content was significantly lower in GhirNAC2-suppressed transgenic plant leaves compared to wild type. In vivo and in vitro studies showed that GhirNAC2 directly binds to the promoter of GhNCED3a/3c, key genes in ABA biosynthesis, which were both down-regulated in GhirNAC2-suppressed transgenic lines. Transient silencing of GhNCED3a/3c also significantly reduced the resistance to drought stress in cotton plants. However, ectopic expression of GhirNAC2 in tobacco significantly enhanced seed germination, root growth and plant survival under drought stress. Taken together, GhirNAC2 plays a positive role in cotton drought tolerance, which functions by modulating ABA biosynthesis and stomata closure via regulating GhNCED3a/3c expression.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    10
    Citations
    NaN
    KQI
    []