Genetically modified crops (GM crops) are plants used in agriculture, the DNA of which has been modified using genetic engineering methods. In most cases, the aim is to introduce a new trait to the plant which does not occur naturally in the species. Examples in food crops include resistance to certain pests, diseases, environmental conditions, reduction of spoilage, resistance to chemical treatments (e.g. resistance to a herbicide), or improving the nutrient profile of the crop. Examples in non-food crops include production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation. Farmers have widely adopted GM technology. Acreage increased from 1.7 million hectares in 1996 to 185.1 million hectares in 2016, some 12% of global cropland. As of 2016, major crop (soybean, maize, canola and cotton) traits consist of herbicide tolerance (95.9 million hectares) insect resistance (25.2 million hectares), or both (58.5 million hectares). In 2015, 53.6 million ha of GM maize were under cultivation (almost 1/3 of the maize crop). GM maize outperformed its predecessors: yield was 5.6 to 24.5% higher with less mycotoxins (−28.8%), fumonisin (−30.6%) and thricotecens (−36.5%). Non-target organisms were unaffected, except for Braconidae, represented by a parasitoid of European corn borer, the target of Lepidoptera active Bt maize. Biogeochemical parameters such as lignin content did not vary, while biomass decomposition was higher. A 2014 meta-analysis concluded that GM technology adoption had reduced chemical pesticide use by 37%, increased crop yields by 22%, and increased farmer profits by 68%. This reduction in pesticide use has been ecologically beneficial, but benefits may be reduced by overuse. Yield gains and pesticide reductions are larger for insect-resistant crops than for herbicide-tolerant crops. Yield and profit gains are higher in developing countries than in developed countries. There is a scientific consensus that currently available food derived from GM crops poses no greater risk to human health than conventional food, but that each GM food needs to be tested on a case-by-case basis before introduction. Nonetheless, members of the public are much less likely than scientists to perceive GM foods as safe. The legal and regulatory status of GM foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation. However, opponents have objected to GM crops on grounds including environmental impacts, food safety, whether GM crops are needed to address food needs, whether they are sufficiently accessible to farmers in developing countries and concerns over subjecting crops to intellectual property law. Safety concerns led 38 countries, including 19 in Europe, to officially prohibit their cultivation. Multiple natural mechanisms allow gene flow from one species to another. These occur in nature on a large scale – for example, it is one mechanism for the development of antibiotic resistance in bacteria. This is facilitated by transposons, retrotransposons, retroviruses, proviruses and other mobile genetic elements that naturally translocate DNA to new loci in a genome. Movement occurs over an evolutionary time scale. Traditional crop breeders have long introduced foreign germplasm into crops by creating novel crosses. A hybrid cereal grain was created in 1875, by crossing wheat and rye. Since then traits including dwarfing genes and rust resistance have been introduced in that manner. Plant tissue culture and deliberate mutations have enabled humans to alter the makeup of plant genomes. The term genetic engineering is applied to genetic modifications made using biotechnology. The first plant produced in that way came in 1982, an antibiotic-resistant tobacco plant. The first field trials occurred in France and the USA in 1986, using tobacco plants engineered for herbicide resistance. In 1987, Plant Genetic Systems (Ghent, Belgium), founded by Marc Van Montagu and Jeff Schell, was the first company to genetically engineer insect-resistant (tobacco) plants by incorporating genes that produced insecticidal proteins from Bacillus thuringiensis (Bt).