Analysis of broadband surface BRDFs derived from TOA SW CERES measurements for surfaces classified by the IGBP land cover

2012 
Most studies on the reflectance properties of the Earth's surface are addressed estimating the bidirectional reflectance distribution function (BRDF) of high spatial resolution and high spectral resolution satellite measurements. This article assesses the development of broadband (BB) BRDFs from radiances corresponding to large footprints classified according to the International Geosphere-Biosphere Programme (IGBP) land-cover classification. Top-of-atmosphere (TOA) shortwave (SW) CERES (Clouds and the Earth's Radiant Energy System) measurements are employed to invert the bidirectional reflectance factor (BRF) Rahman–Pinty–Verstraete (RPV) model for regions identified with the same IGBP type. The inversion of this non-linear parametric model is optimized to improve the computation efficiency and merged into a radiative transfer model to correct the surface radiances for the atmospheric effect. Analysis of the nature of the reflectance field simulated for several regions selected for every IGBP type determ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []