Reaction of serine proteases with substituted 3-alkoxy-4-chloroisocoumarins and 3-alkoxy-7-amino-4-chloroisocoumarins: new reactive mechanism-based inhibitors.

1985 
: The time-dependent inactivation of several serine proteases including human leukocyte elastase, cathepsin G, rat mast cell proteases I and II, and human skin chymase by a number of 3-alkoxy-4-chloroisocoumarins, 3-alkoxy-4-chloro-7-nitroisocoumarins, and 3-alkoxy-7-amino-4-chloroisocoumarins at pH 7.5 and the inactivation of several trypsin-like enzymes including human thrombin and factor XIIa by 7-amino-4-chloro-3-ethoxyisocoumarin and 4-chloro-3-ethoxyisocoumarin are reported. The 3-alkoxy substituent of the isocoumarin is likely interacting with the S1 subsite of the enzyme since the most reactive inhibitor for a particular enzyme had a 3-substituent complementary to the enzyme's primary substrate specificity site (S1). Inactivation of several enzymes including human leukocyte elastase by the 3-alkoxy-7-amino-4-chlorisocoumarins is irreversible, and less than 3% activity is regained upon extensive dialysis of the inactivated enzyme. Addition of hydroxylamine to enzymes inactivated by the 3-alkoxy-7-amino-4-chloroisocoumarins results in a slow (t1/2 greater than 6.7 h) and incomplete (32-57%) regain in enzymatic activity at pH 7.5. Inactivation by the 3-alkoxy-4-chloroisocoumarins and 3-alkoxy-4-chloro-7-nitroisocoumarins on the other hand is transient, and full enzyme activity is regained rapidly either upon standing, after dialysis, or upon the addition of buffered hydroxylamine. The rate of inactivation by the substituted isocoumarins is decreased when substrates or reversible inhibitors are present in the incubation mixture, which indicates active site involvement. The inactivation rates are dependent upon the pH of the reaction mixture, the isocoumarin ring system is opened concurrently with inactivation, and the reaction of 3-alkoxy-7-amino-4-chloroisocoumarins with porcine pancreatic elastase is shown to be stoichiometric. The results are consistent with a scheme where 3-alkoxy-7-amino-4-chloroisocoumarins react with the active site serine of a serine protease to give an acyl enzyme in which a reactive quinone imine methide can be released. Irreversible inactivation could then occur upon alkylation of an active site nucleophile (probably histidine-57) by the acyl quinone imine methide. The finding that hydroxylamine slowly catalyzes partial reactivation indicates that several inactivated enzyme species may exist. The 3-alkoxy-substituted 4-chloroisocoumarins and 4-chloro-7-nitroisocoumarins are simple acylating agents and do not give stable inactivated enzyme structures.(ABSTRACT TRUNCATED AT 400 WORDS)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    77
    Citations
    NaN
    KQI
    []