Genome-wide identification of MAPK cascade genes reveals the GhMAP3K14-GhMKK11-GhMPK31 pathway is involved in the drought response in cotton.

2020 
The mitogen-activated protein kinase (MAPK) cascade pathway, which has three components, MAP3Ks, MKKs and MPKs, is involved in diverse biological processes in plants. In the current study, MAPK cascade genes were identified in three cotton species, based on gene homology with Arabidopsis. Selection pressure analysis of MAPK cascade genes revealed that purifying selection occurred among the cotton species. Expression pattern analysis showed that some MAPK cascade genes differentially expressed under abiotic stresses and phytohormones treatments, and especially under drought stress. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) experiments showed extensive interactions between different MAPK cascade proteins. Virus-induced gene silencing (VIGS) assays showed that some MAPK cascade modules play important roles in the drought stress response, and the GhMAP3K14–GhMKK11–GhMPK31 signal pathway was demonstrated to regulate drought stress tolerance in cotton. This study provides new information on the function of MAPK cascade genes in the drought response, and will help direct molecular breeding for improved drought stress tolerance in cotton. Following a comprehensive analysis of MAPK cascade genes in cotton, we show that the GhMAP3K14–GhMKK11–GhMPK31 pathway is involved in the response to drought stress.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    7
    Citations
    NaN
    KQI
    []