Quantum coherent control of the photoelectron angular distribution in bichromatic-field ionization of atomic neon

2018 
We investigate the coherent control of the photo\-electron angular distribution in bichromatic atomic ionization. Neon is selected as target since it is one of the most popular systems in current gas-phase experiments with free-electron lasers (FELSs). In particular, we tackle practical questions, such as the role of the fine-structure splitting, the pulse length, and the intensity. Time-dependent and stationary perturbation theory are employed, and we also solve the time-dependent Schr\"odinger equation in a single-active electron model. We consider neon ionized by a FEL pulse whose fundamental frequency is in resonance with either $2p-3s$ or $2p-4s$ excitation. The contribution of the non\-resonant two-photon process and its potential constructive or destructive role for quantum coherent control is investigated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    22
    Citations
    NaN
    KQI
    []