language-icon Old Web
English
Sign In

Field desorption

Field desorption (FD) is a method of ion formation used in mass spectrometry (MS) in which a high-potential electric field is applied to an emitter with a sharp surface, such as a razor blade, or more commonly, a filament from which tiny 'whiskers' have formed. This results in a high electric field which can result in ionization of gaseous molecules of the analyte. Mass spectra produced by FD have little or no fragmentation because FD is a soft ionization method. They are dominated by molecular radical cations M+. and less often, protonated molecules [ M + H ] + {displaystyle {ce {+}}} . The technique was first reported by Beckey in 1969. It is also the first ionization method to ionize nonvolatile and thermally labile compounds. One major difference of FD with other ionization methods is that it does not need a primary beam to bombard a sample. Field desorption (FD) is a method of ion formation used in mass spectrometry (MS) in which a high-potential electric field is applied to an emitter with a sharp surface, such as a razor blade, or more commonly, a filament from which tiny 'whiskers' have formed. This results in a high electric field which can result in ionization of gaseous molecules of the analyte. Mass spectra produced by FD have little or no fragmentation because FD is a soft ionization method. They are dominated by molecular radical cations M+. and less often, protonated molecules [ M + H ] + {displaystyle {ce {+}}} . The technique was first reported by Beckey in 1969. It is also the first ionization method to ionize nonvolatile and thermally labile compounds. One major difference of FD with other ionization methods is that it does not need a primary beam to bombard a sample. In FD, the analyte is applied as a thin film directly to the emitter, or small crystals of solid materials are placed onto the emitter. Slow heating of the emitter then begins, by passing a high current through the emitter, which is maintained at a high potential (e.g. 5 kilovolts). As heating of the emitter continues, low-vapor pressure materials get desorbed and ionized by alkali metal cation attachment. Different analytes involve different ionization mechanisms in FD-MS, and four mechanisms are commonly observed, including field ionization, cation attachment, thermal ionization, and proton abstraction. In field ionization, electrons are removed from a species by quantum mechanical tunneling in a high electric field, which results in the formation of molecular ions (M + ̇ in positive ion mode). This ionization method usually takes places in nonpolar or slightly polar organic compounds. In the process of cation attachment, cations (typically H+ or Na+) attach themselves to analyte molecules; the desorption of the cation attachment (e.g., MNa+) can then be realized through the emitter heating and high field. The ionization of more polar organic molecules (e.g., ones with aliphatic hydroxyl or amino groups) in FD-MS typically go through this mechanism. In thermal ionization, the emitter is used to hold and heat the sample, and the analytes are then desorbed from the hot emitter surface. Thermal ionization of preformed ions may apply to the ionization of organic and inorganic salts in FD-MS. Proton abstraction is different from the three ionization methods mentioned above because negative ions (NI) are formed during the process rather than positive ions. (M-H)− ions are often produced in polar organics in the NI mode. The first three ionization mechanisms discussed above all have their analogues in NI-FD-MS. In field ionization, molecular anions (M− ̇ ) can be generated. Anion attachment can also lead to the formation of negative ions for some molecules, for example, (M + Cl)−. Thermal desorption usually produces anion (A−) and cluster ion (e.g. CA2−) for salts. Several different emitter configurations have been used for FD emitters, such as single tips, sharp blades and thin wires. Single metal tips can be made from etching wires either by periodically dipping them into molten salts or by electrolysis in aqueous solutions. Compared to other emitter types, the single tips have the advantage that they can reach the highest field strengths. In addition, well-defined geometric shape of a single tip allows accurate calculation of the potential distribution in the space between the tip and the counter electrode. For blades used as emitters, their ruggedness under the high electric field is one of their advantages. Different thin wires were also used as emitters, such as platinum wires and tungsten wires. Platinum wires are fragile, and tungsten wires are much more stable than platinum wires. Among those emitters, carbon-microneedles tungsten wires are the most widely used emitters in FD mass spectrometry.

[ "Ionization", "Field desorption mass spectrometry", "Field ionization mass spectrometry" ]
Parent Topic
Child Topic
    No Parent Topic