Sputter deposited titanium oxide layers as efficient electron selective contacts in organic photovoltaic devices

2019 
Organic photovoltaics (OPV) has recently reached power conversion efficiencies of 17.3%, making it a green technology that not only offers short energy payback times and diverse photovoltaic integration schemes, but also can deliver competitive power outputs. OPV typically employs electron selective contact layers made from low work function n-type metal oxide semiconductors, such as titanium oxide (TiO2) or zinc oxide (ZnO), developed from a variety of deposition techniques. However, in the case of TiO2 interlayers, the appearance of unwanted s-shape characteristics has been reported extensively in the literature in the past, for a variety of different deposition method used. It has been shown that the s-shape arises from negatively charged chemisorbed oxygen, and that it can be deactivated by UV light illumination, which, however, is hardly compatible with real-life OPV application. In this work, we introduce sputtered crystalline titanium oxide layers as efficient s-shape-free electron selective extrac...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    7
    Citations
    NaN
    KQI
    []