Design of low power and high speed modified carry select adder for 16 bit Vedic Multiplier

2014 
In this paper, a high speed and low power 16×16 Vedic Multiplier is designed by using low power and high speed modified carry select adder. Modified Carry Select Adder employs a newly incremented circuit in the intermediate stages of the Carry Select Adder (CSA) which is known to be the fastest adder among the conventional adder structures. A Novel technique for digit multiplication namely Vedic multiplication has been introduced which is quite different from normal multiplication by shift and addition operations. Normally a multiplier is a key block in almost all the processors and also introduces high delay block and also a major power dissipation source. This paper presents a new design methodology for less delay and less power efficient Vedic Multiplier based up on ancient Vedic Mathematic techniques. This paper presents a technique for N×N multiplication is implemented and gives very less delay for calculating multiplication results for 16×16 Vedic multiplier. In this paper, the main goal is to design the high speed and low power and area efficient Vedic multiplier based on the crosswise and vertical algorithm. Comparisons with existing conventional fast adder architectures have been made to prove its efficiency. The performance analysis shows that the proposed architecture achieves three fold advantages in terms of delay-area-power. The synthesis results of the Vedic multiplier has compared with the booth, array multiplier by different technologies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    13
    Citations
    NaN
    KQI
    []